

ПАСПОРТ

Наименование:

Инкрементальные энкодеры серии **ENH**

Инкрементальные энкодеры серии **ENH**

Обозначение:

Наименование:

Инкрементальный энкодер, 600 об/мин, -10...70°C, IP50

1. Описание

Инкрементальные энкодеры серии ENH – штурвальные инкрементальные энкодеры, с помощью которых осуществляется регулировка перемещений и угла поворота в механизмах.

2. Принцип работы

Инкрементальные энкодеры серии ENH формирует импульсы, число которых совпадает с углом поворота вала. Через промышленную сеть либо шинный интерфейс он передает сигнал на счетное устройство. Здесь импульсы преобразуются в угол поворота вала.

При вращении штурвала на выходных клеммах энкодера по 2 каналам генерируются импульсы напряжения. Количество импульсов для каждого канала совпадает с числом шагов за оборот.

3. Применение

Штурвальные энкодеры предназначены для задания положения и других параметров и выполняют следующие функции:

- ручное управление оборудованием (сейфы, микроскопы);
- точная калибровка станков с числовым программным управлением (ЧПУ);
- задание положения в прочих системах позиционирования.

4. Технические характеристики

4.1. Электрические характеристики

Выход м Выход м Выход м Выход м ониж. Ток нагрузк овысок. Ток нагрузкения Ток нагрузкения от	Подключение	Диэлектрическая прочность	Сопротивление изоляции	Макс частота срабатывания	Потребляемый ток		питания	Источник	падение)	(подъем/	Время сраба-	еристи Выход	управления		Разность фаз на выходе	Выходная фаза	,	Разрешение (импульс/оборот)	Выход Line Driver	Модель Выход напряжения Выход Line Driver Разрешение (импульс/оборот)	Модель Выход напряжения Выход Line Driver Разрешение (импульс/оборот)	¥	¥	
Вь Ток н «. Ток дное нап дное нап Ток изж. Т ысок. 1		НОСТЬ	ции	Івания		Выход Line Driver	Выход напряжения	Комплементар. выход	Выход Line Driver	Выход напряжения	Комплементар. выход	Выход Line Driver	Выход напряжения	• Комплементарный • выход	де			рот)	ver	эния ver opoт)	ный выход ения ver орот)	ный выход ения ver ppoт)	ный выход ения ver орот)	ный выход ения ver
	Блок зажимов	750 В~, 50/60 Гц в течение 1 минуты (между всеми заж	Мин. 100 МОм (при 500 В= между всеми выводам	10 кГц	Макс. 40 мА (без нагрузки); выход Line Driver: макс. 50 мА (без нагр	5 В= ± 5% (пульсация двойной амплитуды:	• 12–24 B= ± 5% (пульсация двойной амплиту)	• 5 B= ± 5% (пульсация двойной амплитуды: м				֓֞֞֜֜֜֝֟֝֜֝֟֜֝֟	Ток нагрузки: макс. 10 мА, остаточное напряжение:	보 당 (4 T + 	Фазы A, B (выход Line Driver: фазы A, \overline{A} , B, \overline{B})		25, 100 (другое отношение доступно по дополнительному заказу)	ENH-	ENH , ENH	ENH1-T, ENH2-Т ENH1-V, ENH2-V ENH1-L, ENH2-L 25, 100 (другое отношение доступно по дополнительному	ENH1-Т, ENH2 ENH1-V, ENH2 ENH1-L, ENH2 25, 100 (другое отношение доступно по дополнитег	ЕNН1-Т, ENН2 ENН1-V, ENН2 ENH1-L, ENН2 25, 100 (другое отношение доступно по дополнитег	Инкрементальный энкодер-штурвал с рукояткой ЕNH1-T, ENH2-T[ENH1-V, ENH2-V[ENH1-L, ENH2-L[ENH1-L, ENH2-L[

4.2. Механические характеристики

	Степень защиты ІР5	Влажность 35–85% относительной влажност	Температура окружающей среды -10 +70°С (без замо	Ударопрочность	Амплитуда 1 по каждой из с	Частота вращения	Механические характеристики Нагрузка на вал Радиалы	Пусковой момент
Приблиз. 300 г	IP50 (стандарт МЭК)	35-85% относительной влажности; хранение: 35-90% относительной влажности	-10 +70°С (без замораживания); хранение: -25 + 85°С	Макс. 50G	Амплитуда 1,5 мм при частоте 10–55 Гц по каждой из осей X, Y, Z в течение 2 часов	(Примечание 1) Макс. 200 об/мин (обычная), 600 об/мин (пиковая)	Радиальная: 2 кгс; осевая: 1 кгс	Макс. 1 гс∙см (0,098 Нм)

Примечание 1. Макс. доп. частота вращения ≥ макс. частоты оборотов.

(Макс. частота вращения (об/мин) = $\frac{\text{Макс. частота срабатывания}}{\text{макс. частота срабатывания}} \times 60 \text{ c}$). разрешение

должно быть меньше максимально допустимого значения. Разрешающую способность следует выбирать исходя из того, что значение максимальной частоты вращения

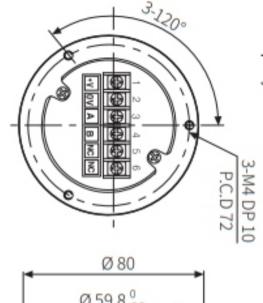
5. Информация для заказа

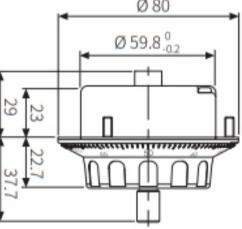
M N T

Ф Разрешение

Номер: Обратитесь к разрешению в разделе "Тех. характеристики»

2 Нажмите на положение стопора


2: Нормальная "L"


1: Нормальная "Н"

- Выход управления
- Т: Комплиментарный выход
- V: Выход напряжения
- L: Выход Line Driver
- 4 Напряжение питания
- 5: 5 B DC ± 5%
- 24: 12...24 B DC ± 5%

6. Габаритные размеры

Размеры указаны в мм.

Гарантийные обязательства:
Гарантийный срок - 12 месяцев с даты отгрузки.
М.П.
Дата отгрузки: «»20г.