

SSD-700

Устройство плавного пуска

Руководство по эксплуатации

07.09.2023

Оглавление

1.	Me	ры безопасности	. 4
	1.1.	Опасность поражения электрическим током	.4
	1.2.	Утилизация	5
2.	Вве	дение	. 6
	2.1.	Список функций	.6
3.	Осн	овные настройки	. 7
-	3.1.	Обзор процелуры настройки	.7
	3.2.	Проверка полключения	.7
	3.3.	Проверка подклю селия	.7
л	Mo	ארדע שבדע	Q
ч.	11		. U Q
	4.1.	правила монтажа К доми в управления	0 Q
	4.2.	Напражанна управления.	0 Q
	4.3.	Папряжение управления	0 Q
	4.4.	Подключение ценей управления	0
	ч. <i>3</i> . 46	Полинные выходы	0
	ч.0. Л 7	подключение термисторов двигателя К домы в зазом донна	0
	/. / 8	Полно номонно он дори и и домм	
	4.0.	Гасположение силовых клемм	
	4.9. 110	Силовые клемины	11
E		припципиальные схемы	11
5.	Сил 5 1		12
	5.1. 5.2	подключение двигателя	12
	5.2.	Шунтирующии контактор	13
	5.3. 5 4	Сетевои контактор	13
	5.4.	Автоматическии выключатель	13
~	ວ.ວ.	коррекция коэффициента мощности	13
6.	Пул	ът управления и индикация	14
	6.1.	Пульт управления	14
	6.2.	Дисплей	14
7.	Сре	дства техобслуживания	17
	7.1.	Проверка подключения	17
	7.2.	Меню отладки	17
	7.3.	Меню журналов	19
8.	Экс	плуатация	20
	8.1.	Приоритет команд	20
	8.2.	Команды пуска, сброса и останова	20
	8.3.	Режимы плавного пуска	21
	8.4.	Режимы останова	24
	8.5.	Работа в толчковом режиме	27
	8.6.	Подключение внутри треугольника	28
9.	Mei	ню программирования	29
	9.1.	Меню программирования	29
	9.2.	Блокировка настроек	29
	9.3.	Код доступа	30
	9.4.	Быстрая настройка	30
	9.5.	Стандартное меню	31
	9.6.	Расширенное меню	32
	9.7.	Загрузка и сохранение параметров	35
	9.8.	Описание параметров	36
10). При	меры применений	52
	10.1.	Установка с сетевым контактором	52
	10.2.	Установка с внешним шунтирующим контактором	53
	10.3.	Работа в аварийном режиме	54
	10.4.	Вспомогательная цепь отключения	55
	10.5.	Торможение постоянным током с внешним датчиком нулевой скорости	56
	10.6.	Плавное торможение	57
	10.7.	Двухскоростной двигатель	58
	10.8.	Двигатель с контактными кольцами	60
11	. Пои	ск и устранение неисправностей	62
	11.1.	Реакция на аварийные ситуации	62
	11.2.	Сообщения отключения	62
	11.3.	Обычные отказы	66
12	. При	ложение	69
	12.1.	Спецификации	69
		-	

12.2.	Значения параметров	71
13. Pa6	бота по протоколу MODBUS	75
13.1.	Важная информация	75
13.2.	Настройки	75
13.3.	Функции Modbus	75
13.4.	Регистры Modbus	75
13.5.	Коды ошибок	77
13.6.	Внутренняя ошибка Х	
13.7.	Примеры	
13.8.	Коды ошибок Modbus	
13.9.	Удаленное управление по Modbus	79
13.10.	Заземление и экранирование	79
13.11.	Терминальный резистор	
13.12.	Подключение кабеля RS485	
13.13.	Спецификация соединения в сеть RS485 для удаленного управления	
14. До	полнительные функции	81
14.1.	Интерфейс Profibus и интерфейс подключения пульта	
14.2.	Вынос панели управления	

1. Меры безопасности

Этот символ отмечает инструкции, требующие особого внимания персонала при монтаже и эксплуатации оборудования.

Указанные предупреждения не могут охватить все возможные причины повреждения оборудования, но могут указать самые общие причины повреждений. Пользователь несет ответственность за чтение и изучение указаний этого руководства перед монтажом, эксплуатацией и техобслуживанием этого оборудования, за соблюдение правил электробезопасности, в том числе использования надлежащих средств индивидуальной защиты, и за получение консультаций перед эксплуатацией этого оборудования в режиме, отличном от описанного в руководстве.

внимание

УПП не обслуживается пользователем. УПП должно обслуживаться только уполномоченным сервисным персоналом. Несанкционированный доступ к блоку отменяет гарантийные обязательства.

1.1. Опасность поражения электрическим током

Напряжение в следующих узлах является опасным, может вызвать поражение электрическим током и привести к смерти:

- Кабели и клеммы питания переменным током
- Выходные силовые кабели и клеммы
- Многие внутренние узлы УПП

Перед снятием с пускателя любой крышки или выполнения на нем любого техобслуживания необходимо отключить от пускателя силовое питание.

ПРЕДУПРЕЖДЕНИЕ - ОПАСНОСТЬ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ

Модели от 132 кВт и выше: Шину и радиатор следует считать находящимися под напряжением при каждом подсоединении УПП к силовой сети (включая состояния, когда УПП отключено или ожидает команды).

КОРОТКОЕ ЗАМЫКАНИЕ.

УПП не защищен от короткого замыкания. После сильной перегрузки или короткого замыкания необходимо поручить уполномоченной сервисной службе полностью проверить работоспособность УПП.

ЗАЗЕМЛЕНИЕ И ЗАЩИТА ЦЕПЕЙ ПИТАНИЯ

Обязанностью пользователя или лица, монтирующего УПП, является обеспечение надлежащего заземления и защиты цепей питания согласно местным действующим нормам и правилам.

ДЛЯ ВАШЕЙ БЕЗОПАСНОСТИ

- Функция УПП *OCTAHOB* не отключает опасные напряжения с выхода УПП. Перед доступом к электрическим соединениям необходимо отключить питание.
- Функции защиты УПП применяются только для защиты двигателя. Пользователь обязан обеспечить безопасность персонала, эксплуатирующего механизмы и машины.
- В некоторых установках случайные пуски могут создавать повышенный риск опасности для персонала или повреждения приводимых машин. В таких случаях рекомендуется оснастить систему питания УПП разъединяющим выключателем и автоматическим выключателем (например, силовым контактором), управляемым с помощью внешней системы обеспечения безопасности (например, аварийный останов или датчик отказа).
- УПП оснащено системами внутренней защиты, которые отключают УПП в случае отказов и за счет этого останавливают двигатель. Отключение двигателя может также возникнуть из-за флуктуации напряжения, пропадания питания и заклинивания двигателя.
- Имеется возможность перезапуска двигателя после устранения причин отключения, что может быть опасным в некоторых машинах или установках. В таких случаях важно предусмотреть нужные средства защиты от перезапуска после неплановых остановов двигателя.
- УПП является компонентом, предназначенным для встраивания в электрооборудование; поэтому разработчик/пользователь системы обязан обеспечить безопасность системы и ее соответствие местным стандартам техники безопасности.

Производитель не может нести ответственность за убытки, понесенные при нарушении приведенных выше рекомендаций.

АВТОПУСК

Осторожно используйте функцию автопуска. Перед началом работы прочтите все примечания о режиме автопуска.

Примеры и схемы в этом руководстве приведены только для иллюстрации. Приведенная в этом руководстве информация может быть изменена в любое время и без предварительного оповещения. Ни в коем случае не принимается никакая ответственность за любой непосредственный, косвенный или последующий ущерб, возникающий из-за использования или применения этого оборудования.

1.2. Утилизация

Оборудование с электрическими компонентами нельзя утилизировать вместе с бытовым мусором.

Его необходимо утилизировать отдельно как электрический или электронный мусор согласно местным действующим нормам и правилам.

Поскольку производитель постоянно улучшает свои изделия, он оставляет за собой право в любое время без предварительного оповещения изменять технические характеристики изделия. Текст, схемы, изображения и все другие литературные или художественные фрагменты этого документа защищены авторским правом. Пользователи могут копировать некоторый материал для своего личного использования, но они не имеют права и не должны копировать или использовать материал для других целей без получения разрешения производителя. Производитель стремится обеспечить правильность всей информации этого документа, включая графическую, но не принимает никакой ответственности за ошибки, пропуски или отличия от поставленного изделия.

2. Введение

УПП является усовершенствованным цифровым устройством плавного пуска для двигателей с мощностью от 11 кВт до 800 кВт. Устройства плавного пуска SSD-700 поддерживают полный набор функций защиты двигателя и системы. Они разработаны для надежной эксплуатации в самых суровых условиях в ответственных установках.

2.1. Список функций

Выбор режима плавного пуска

- Адаптивное управление
- Постоянная величина тока
- Нарастание тока

Выбор режима плавного останова

- Останов выбегом
- Линейное снижение напряжения
- Адаптивное управление
- Торможение

Опции дополнительных входов и выходов

- Входы дистанционного управления (3 фиксированных, 2 программируемых)
- Релейные выходы (1 фиксированный, 3 программируемых)
- Аналоговый выход
- Встроенный вход РТ100 RTD

Удобный информативный дисплей

- Съемная панель управления
- Отображение информации на разных языках
- Архив событий с установкой даты и времени
- Рабочие счетчики (число пусков, часы наработки, кВт*ч)
- Отслеживание эксплуатационных параметров (ток, напряжение, коэффициент мощности, кВт*ч)
- Настраиваемый пользователем экран

Настраиваемая защита

- Перегрузка двигателя
- Превышение времени пуска
- Пониженный ток
- Мгновенный максимальный ток
- Дисбаланс тока
- Отклонение частоты сети питания
- Внешняя ошибка
- Сигнал термистора двигателя
- Ошибки в силовой цепи
- Неверное чередование фаз

Модели для любых применений

- от 23 до 1600 А (номинально)
- От 200 до 440 В переменного тока
- Встроенный шунтирующий контактор
- Подключение в линию или в треугольник

3. Основные настройки

3.1. Обзор процедуры настройки

ПРЕДУПРЕЖДЕНИЕ

Не подавайте напряжение на УПП до завершения подключения всех проводов.

- 1. Установите устройство плавного пуска (см. Правила монтажа на стр. 5).
- 2. Подключите цепи управления (см. 4.2 Клеммы управления и 4.10 Принципиальные схемы).
- 3. Подайте питание на цепи управления УПП.
- 4. Установите дату и время.
- 5. Настройте УПП на ваше применение:
 - 5.1. Нажмите MENU для входа в меню.
 - 5.2. Кнопками ▼ и ▲ выберите пункт *Меню быстрой настройки* и нажмите MENU для входа в меню.
 - 5.3. Найдите ваше применение в списке, затем нажмите MENU.
- 6. Если ваше применение отсутствует в списке быстрой настройки:
 - 6.1. Нажмите EXIT для возврата к предыдущему меню.
 - 6.2. Кнопками 🔻 и 🛦 выберите пункт Стандартное меню и нажмите.
 - 6.3. Перейдите к пункту Данные двигателя 1 и нажмите MENU, затем нажмите MENU еще раз.
 - 6.4. Установите номинальный ток двигателя в параметре 1А.
- Примечание

Для нестандартных применений смотрите главы *Расширенное меню* на стр. 33 и *Описание параметров* на стр. 33.

7. Закройте меню, несколько раз нажав Exit.

8. При необходимости используйте встроенные средства моделирования для проверки правильности подключения цепей управления (см. *Моделирование работы* ниже).

9. Подключите силовые кабели питания ко входным клеммам УПП 1/L1, 3/L2, 5/L3.

10. Подключите кабели двигателя к выходным клеммам УПП 2/Т1, 4/Т2, 6/Т3.

3.2. Проверка подключения

Можно проверить УПП, подключив его к маленькому двигателю. В этом случае проверяется работа входов и выходов, в том числе при работе защит. Этот режим не подходит для проверки процессов пуска и останова.

Номинальный ток тестового двигателя должен быть не менее 2% от минимального тока УПП (см. главу Установка минимального и максимального тока на с. 71).

г		<u>∼</u>
L	_	- 1
L	_	- 1
L	_	- 1
L	_	-

внимание

При тестировании УПП с маленьким двигателем установите параметр 1А Номинальный ток двигателя на минимально допустимое значение.

3.3. Моделирование работы

Функция моделирования позволяет проверить работу цепей управления УПП и подключенного внешнего оборудования без подключения силового питания.

Моделирование работы

Моделирование пуска, работы и останова двигателя для проверки соответствующей работы цепей управления УПП и подключенного внешнего оборудования. См. *Моделирование работы* на с. 19.

• Моделирование защит

Моделирование работы защит для проверки соответствующей работы цепей управления УПП и подключенного внешнего оборудования. См. *Моделирование защит* на с. 19.

• Моделирование выходных сигналов

Моделирование выходных сигналов для проверки соответствующей работы цепей управления УПП и подключенного внешнего оборудования. См. *Моделирование сигналов* на с. 20.

Функции моделирования работают только при наличии питания цепей управления, состоянии готовности и активном состоянии панели управления.

внимание

Для использования функций моделирования необходимо ввести пароль. По умолчанию пароль равен 0000.

4. Монтаж

4.1. Правила монтажа

1	5,5110 кВт – расстояние не менее 100 мм	
T	132800 кВт – расстояние не менее 200 мм	
h	5,5110 кВт – расстояние не менее 50 мм	
2	132800 кВт – расстояние не менее 200 мм	
3	УПП могут быть установлены в ряд сторона к стороне без зазора	
4	УПП может быть установлен горизонтально со снижением номинального тока на 15%	

4.2. Клеммы управления

4.3. Напряжение управления

Клеммы А1 и А2: ~220-400В

4.4. Подключение цепей управления

1	Двухпроводное управление
2	Трехпроводное управление
3	Четырехпроводное управление
А	Пуск
В	Стоп
С	Сброс

внимание

Не подавайте напряжения на клеммы входов управления. Это активные входы 24 В постоянного тока, и ими нужно управлять только беспотенциальными контактами.

Кабели управляющих сигналов должны быть проложены отдельно от силовых питающих кабелей. Вход сброса может быть нормально разомкнутым или замкнутым. Используйте параметр 6М для выбора конфигурации.

4.5. Релейные выходы

У УПП есть 4 релейных выхода, один стандартный и 3 программируемых.

Выход Работа замыкается после завершения плавного пуска (когда пусковой ток упадет ниже 120% от запрограммированного тока полной нагрузки двигателя) и остается замкнутым, пока не начнется останов (либо плавный останов, либо останов выбегом).

Работа программируемых выходов определяется настройками параметров 7А~71.

- Если выход назначен на управление главным контактором, то он активируется, как только УПП получа-• ет команду пуска, и остается активным, пока УПП управляет двигателем (пока двигатель не начнет останов на выбеге, или до конца плавного останова).
- Если выход назначен на функцию отключения, то он активируется при возникновении отключения.
- Если флагу соответствует какой либо выход, то при активации этого флага активируется соответствующий ему выход (параметры 7M~7O).

внимание

Катушки управления некоторых контакторов могут быть не пригодны для работы с реле, установленными на печатной плате устройств плавного пуска. Проконсультируйтесь с изготовителем/поставщиком контактора для обеспечения совместимости.

4.6. Подключение термисторов двигателя

подключите термисторы двигателя к УПП. УПП выполнит отключение, когда сопротивление цепи термистора превысит примерно 3,6 кОм или упадет ниже 20 Ом.

ПРИМЕЧАНИЕ

Если термистор не подключен, входы В4 и В5 должны быть свободными. Если их соединить между собой, УПП отключится по аварии.

Цепь термистора нужно провести экранированным кабелем и электрически изолировать ее от земли и других цепей питания и управления.

4.7. Клеммы заземления

Клеммы заземления расположены на задней панели УПП.

- На УПП от 5,5 до 55 кВт клемма заземления расположена со стороны выхода (снизу). •
- На УПП от 75 до 800 кВт клеммы заземления расположены со стороны входа и со стороны выхода. ٠

4.8. Расположение силовых клемм

Питание подключается к клеммам L в верхней части УПП:

4.9. Силовые клеммы

ПРИМЕЧАНИЕ

В некоторых моделях используются алюминиевые шины. При подключении клемм питания рекомендуется тщательно очистить контактную поверхность (с помощью наждачной бумаги или щетки из нержавеющей стали) и использовать соответствующий контактный компаунд для предотвращения коррозии.

Используйте только медные многожильные или одножильные провода, пригодные для работы при +75 С или выше.

5.5KW~55KW	75KW~110KW	132KW~400KW	450KW~800KW
7.0mm (M6) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	9.0mm (MI0) 15,0 15,0 1-25,0		

4.10. Принципиальные схемы

1	Питание цепей управления		
2	Входы удаленного управления		
3	Вход термистора двигателя		
4A	Вход RTD/PT100 - двухпроводный		
4B	Вход RTD/PT100 - трехпроводный		
4C	Вход RTD/PT100 - четырехпроводный		
5	Выход =24В		
6	Выходные реле		
7	Аналоговый выход		
8	Порт RS485		

C23	3, C24	Пуск
C3	1, C32	Стоп
C4	1, C42	Сброс
C53	3 <i>,</i> C54	Программируемый вход А
C63	3 <i>,</i> C64	Программируемый вход В
1	3, 14	Релейный выход А
2	3, 24	Релейный выход "Работа"
31,	32, 34	Релейный выход В
41,	42, 44	Релейный выход С

ПРИМЕЧАНИЕ

В некоторых моделях токовые трансформаторы установлены на силовых клеммах снаружи корпуса УПП.

5. Силовые цепи

5.1. Подключение двигателя

УПП можно подключить к двигателю последовательно или внутри треугольника (также называются 3проводным и 6-проводным подключениями). При подсоединении внутри треугольника введите номинальный ток двигателя в параметр 1А. УПП автоматически определяет подсоединение двигателя последовательно или внутри треугольника и вычисляет нужный уровень тока внутреннего треугольника.

Последовательное подключение:

КМ1 – Главный контактор

F1 – Быстродействующий предохранитель (опция)

Подключение внутри треугольника:

КМ1 – Главный контактор

F1 – Быстродействующий предохранитель (опция)

внимание

При подключении УПП внутри треугольника всегда устанавливайте главный контактор или автоматический выключатель.

5.2. Шунтирующий контактор

УПП оснащено внутренним шунтирующим контактором, поэтому во внешнем шунтирующем контакторе нет необходимости.

5.3. Сетевой контактор

Сетевой контактор необходимо использовать, если УПП подключен в конфигурации внутри треугольника. Для последовательного подключения он является опциональным. Выберите контактор категории AC3 с номиналом не меньше номинального тока подключенного двигателя.

5.4. Автоматический выключатель

Автоматический выключатель можно использовать вместо главного контактора для разъединения цепи двигателя в случае отключения УПП. Механизм расцепителя по отключению должен питаться со стороны питания автоматического выключателя или от отдельного источника питания.

5.5. Коррекция коэффициента мощности

Если используется коррекция коэффициента мощности, то для подключения конденсаторов нужен специальный контактор.

внимание

Конденсаторы коррекции коэффициента мощности (должны быть подключены со стороны питания УПП. Подключение конденсаторов коррекции коэффициента мощности со стороны выхода приведет к повреждению УПП.

6. Пульт управления и индикация

6.1. Пульт управления

Пульт управления позволяет хранить и копировать набор параметров УПП, что позволяет использовать пульт для переноса настроек одного прибора на несколько других.

Примечание: Функции кнопки Store выполняет кнопка Menu.

Индикаторы состояния

тыдлаторы				
Индикатор	Горит	Мигает		
Ready	Двигатель остановлен, УПП готов к	Двигатель остановлен, УПП ожидает окончания за-		
Neauy	пуску	держки пуска (4М) или охлаждения двигателя (4N)		
Run	Двигатель работает на полном напряжении	Двигатель разгоняется или замедляется		
Trip	Отключение по аварии	Предупреждение		
Local	Локальное управление пускателем			

Если индикатор Local не горит, УПП управляется удаленно.

Если ни один индикатор не горит, то питание цепей управления отсутствует.

• Синхронизация панели и УПП

Когда панель подключена к УПП, она синхронизирует свои настройки параметров с настройками в пускате-

ле. Если к УПП будет подключена другая панель, то на экран выводится запрос подтверждения. Кнопками ▲ и ▼ выберите нужное действие. Нажмите *Menu* для подтверждения. Если любая из настроек в панели недопустима для УПП, то панель загружает значения по умолчанию.

Обнар.новый дисплей

Копир.параметры Дисплей/Пускатель Пускатель/Дисплей

6.2. Дисплей

На дисплей выводится большое количество информации о работе УПП. В верхней половине экрана показана оперативная информация о токе или мощности двигателя (как выбрано в параметре 8D). С помощью кнопок ▲ и ▼ выберите информацию, выводимую на нижнюю половину экрана. Варианты:

- Состояние УПП
- Программируемый экран
- Температура двигателя

- Ток
- Мощность двигателя
- Информация о последнем пуске
- Дата и время
- Проводимость тиристора

ПРИМЕЧАНИЕ

Ниже будет показана индикация при заводских настройках.

Состояние УПП

В окне состояния пускателя показаны параметры рабочего состояния пускателя, температура и мощность двигателя.

Готов M1 000% 0000.0kW

Программируемый экран

Программируемый пользователем экран можно сконфигурировать на отображение нужной информации. С помощью параметров от 8Е до 8Н выберите информацию для отображения.

Готов	
0000 hrs	%

Температура двигателя

В окне температуры показано, какой набор данных двигателя используется, и показана температура обоих двигателей в процентах от их максимально допустимой температуры. Если УПП сконфигурирован на работу с одним двигателем, то температура второго двигателя (M2) всегда будет показана как 0%.

Осн. парам. двигателя ►М1 000% М2 000%

Ток

Здесь отображается текущее значение тока в каждой фазе. Если установлена плата подключения RTD / PT100 и защиты от короткого замыкания на землю, то отображается также ток на землю.

Фазовые токи 000,0A 000.0A 000.0A

Мощность двигателя

В окне мощности двигателя показаны мощность двигателя (кВт, л.с. и кВА) и коэффициент мощности PF.

0000.0kW	0000HP
0000kVA	2.55pf

Значения мощности вычисляются с учетом напряжения питания (параметр 8N)

Информация о последнем пуске

В окне информации о последнем пуске показаны параметры последнего успешного пуска.

- длительность пуска (секунды)
- максимальный пусковой ток (в процентах от номинального тока двигателя)
- вычисленное повышение температуры двигателя

Последний пуск	000s
350%FLC	∆Темп 0%

Дата и время

Окно даты и времени показывает текущие системные дату и время (в формате 24 часов). Подробнее о настройке даты и времени смотрите главу Настройка даты и времени.

Рабочий график

Рабочий график обеспечивает просмотр эксплуатационных параметров в реальном времени. С помощью параметров 81~8L выберите информацию для отображения

000.0A	0-400%

<u>.....</u>

Проводимость тиристоров

Гистограмма проводимости тиристоров показывает уровень проводимости для каждой фазы.

Пров. L1	
Пров. L2	
Пров. L3	

7. Средства техобслуживания

7.1. Проверка подключения

УПП может быть подключен к небольшому двигателю для проверки. Во время проверки можно проверить функционирование входов и выходов УПП. Этот режим проверки непригоден для проверки режимов плавного пуска или плавного останова.

Номинальный ток двигателя для проверки должен быть не менее 2% от минимального значения номинального тока УПП (см. диапазоны номинальных токов в главе *12.1 Спецификации*).

внимание

При проверке УПП с небольшим двигателем настройте параметр 1А Ток полной нагрузки двигателя на минимальное допустимое значение.

7.2. Меню отладки

Меню отладки обеспечивает доступ к средствам отладки и тестирования. Нажмите *Alt*, затем *Tools*.

Навигация по меню отладки:

- для перехода к следующему или предыдущему пункту нажимайте кнопку ▲ или ▼.
- для открытия пункта для просмотра нажмите кнопку •.
- для возврата на предыдущий уровень нажмите кнопку **4**.
- для закрытия меню отладки многократно нажимайте **4**.

Настройка даты и времени

- 1. Нажмите Alt, затем Tools.
- 2. Перейдите к окну даты/времени.
- 3. Нажмите кнопку 🕨 для входа в режим редактирования.
- 4. Нажимайте кнопки 🕨 и ┥ для выбора редактируемой части даты или времени.
- 5. Нажимайте кнопки ▲ или ▼для изменения значения.
- 6. Для сохранения изменений нажмите кнопку .

Для отмены изменений нажмите кнопку **4**.

Моделирование

Моделирование позволяет проверить работу цепей управления УПП при отсутствии силового питания. В УПП есть три режима моделирования.

• Моделирование работы

Моделирование пуска, работы и останова двигателя для проверки соответствующей работы цепей управления УПП и подключенного внешнего оборудования.

 Моделирование защит
 Моделирование работы защит для проверки соответствующей работы цепей управления УПП и подключенного внешнего оборудования.

• Моделирование выходных сигналов

Моделирование выходных сигналов для проверки соответствующей работы цепей управления УПП и подключенного внешнего оборудования.

Доступ к моделированию осуществляется через меню отладки. Функции моделирования работают только при наличии питания цепей управления, состоянии готовности и активном состоянии панели управления.

внимание

Для использования функций моделирования необходимо ввести пароль. По умолчанию пароль равен 0000.

Моделирование работы

В любой момент можно остановить процесс моделирования, нажав кнопку Exit.

Последовательность моделирования:

- 1. Нажмите Alt, затем Tools.
- 2. Перейдите к Моделированию работы и нажмите 🕨.
- 3. Введите пароль, выбирая цифры кнопками ▲ или ▼и после каждой цифры нажимая ▶.

Моделиров.работы Готов Подать сигнал пуска

Откл. Вкл.

Програм.реле А

4. Нажмите кнопку Start или подайте сигнал на вход пуска. Должно замкнуться реле вводного контактора (по умолчанию – реле А).

внимание

Если подключено силовое питание, то появится индикация ошибки. Отключите силовое питание.

- 5. Нажмите ▶. Начнется моделирование плавного пуска, индикатор RUN будет мигать.
- 6. Нажмите ▶ для моделирования работы. Индикатор RUN будет светиться, шунтирующий контактор будет замкнут.
- 7. Нажмите кнопку Stop или подайте сигнал на вход останова. Индикатор RUN будет мигать, шунтирующий контактор разомкнется.
- 8. Нажмите ▶, индикатор Ready будет светиться, сетевой контактор разомкнется.
- 9. Нажмите 🗲 для возврата в меню отладки.

Моделирование работы защит

В этом режиме имитируется активация каждой функции защиты для проверки правильного функционирования соответствующих цепей управления.

Как использовать имитацию защиты:

- 1. Нажмите Alt, затем Tools
- 2. Кнопками 🛦 🔻 выберите пункт Моделиров.защиты, нажмите 🕨
- 3. Введите пароль, выбирая цифры кнопками 🔺 или 🔻 и после каждой цифры нажимая 🕨
- Кнопками ▲ ▼ выберите моделируемую защиту
- Нажмите и удерживайте ► для имитации выбранной защиты
- 6. Мгновенно выводится новое окно. Реакция УПП зависит от настроек, связанных с данной защитой (группа параметров 16).
- 7. Кнопками 🛦 🔻 выберите другою защиту или нажмите 🗲 для выхода

внимание

Если защита вызовет отключение УПП, то выполните сброс перед имитацией другой защиты. Если действие защиты настроено на Предупр. и журнал, то сброс не нужен.

Если защита настроена на Предупр. и журнал, то сообщение о предупреждении можно просмотреть, нажав кнопку ▶.

Если защита настроена на Только журнал, то на экран ничего не выводится, но в журнале появляется запись.

Моделирование выходных сигналов

Режим моделирования выходных сигналов имитирует подачу выходных сигналов для проверки того,

что выходы и все соответствующие цепи управления работают правильно. Для проверки работы сигналов (температуры двигателя и низкого/высокого тока) настройте выходное реле на соответствую-

щую функцию и проверьте работу выходных цепей.

- 1. Нажмите Alt, затем Tools
- 2. Кнопками 🛦 🔻 выберите пункт Моделир.выходн.сиг., нажмите 🕨
- 3. Введите пароль, выбирая цифры кнопками 🛦 или 🔻 и после каждой цифры нажимая 🕨
- 4. Кнопками ▲ ▼ выберите моделируемую функцию, затем нажмите ►.
- 5. С помощью кнопок 🛦 🔻 включайте и отключайте сигнал.

Моделиров.работы Пуск Х:ХХ с STORE - продолжать Моделиров.работы Работа Подать сигн.останова

Моделиров.работы Останов Х:ХХ с

STORE - продолжать

Моделиров.работы

Остановлен STORE - продолжать

Выбранная защита

Моделиров.работы Проверки предпуска STORE - продолжать

- Для проверки работы аналогового выхода с помощью кнопок ▲ ▼ меняйте его значение и проверяйте величину сигнала на соответствующем выходе.
- 7. Нажмите 🗲 для возврата к списку моделируемых функций.

Состояние цифровых входов / выходов

Это окно показывает текущее состояние цифровых входов и выходов. В верхней строке окна показано состояние входов пуска, останова, сброса и программируемых входов А и В.

В нижней строке окна показано состояние программируемого выхода А, стандартного выхода *RUN*, программируемых входов В и С.

Состояние аналоговых входов / выходов

Это окно показывает текущее состояние аналоговых входов и выходов.

Сброс тепловых моделей

Программа улучшенной тепловой модели УПП постоянно контролирует режим работы двигателя. Это позволяет пускателю в любой момент вычислить температуру двигателя и возможность успешного пуска. Если УПП сконфигурирован для использования с двумя двигателями, то температура каждого двигателя моделируется независимо.

- 1. Нажмите Alt, затем Tools
- Кнопками ▲ ▼ выберите пункт Сброс теплов.моделей, нажмите
 ►
- 3. Для сброса нажмите 🕨
- 4. Введите пароль, выбирая цифры кнопками 🛦 или 🔻 и после каждой цифры нажимая 🕨
- 5. Кнопками 🛦 🔻 выберите Сброс, затем нажмите 🕨
- 6. При сбросе тепловой модели на экран выводится подтверждающее сообщение и затем он возвращается к предыдущему окну.

ВНИМАНИЕ

Сброс тепловой модели двигателя может сократить ресурс двигателя и его следует использовать только при крайней необходимости.

7.3. Меню журналов

Меню журналов содержит информацию по событиям, отключениям и работе УПП. Для открытия окна журналов нажмите *Alt*, затем *F1 Logs*. Порядок навигации по меню журналов:

- Нажмите Alt, затем F1 Logs.
- Выберите нужный журнал кнопками ▲ и ▼.
- Для открытия журнала нажмите кнопку ►.
- Выберите нужный пункт кнопками ▲ и ▼.
- Для просмотра параметров нажмите кнопку ►.
- для возврата на предыдущий уровень нажмите кнопку **4**.
- 🕨 для закрытия меню журналов многократно нажимайте ┥.

Меню журналов можно открыть только при просмотре окон контроля.

Журнал отключений

В журнале отключения хранятся параметры 8 самых последних отключений вместе с датой и временем отключения. Отключение 1 - самое последнее, а отключение 8 - самое старое.

Аналог.выход А 000% 04.0mA

Сост.цифров.Вх/Вых Входы: 0000000 Выходы: 0000100

Сост.аналог.Вх/Вых Вход: - - - - % Выход А: 04.0 мА

Сброс теплов.моделей Не сбрасывать Сброс

Сброс теплов.моделей

M1 000% M2 000% STORE - сброс Откройте журнал отключений:

- 1. Нажмите Alt, затем F1 Logs.
- 2. Перейдите к пункту Журнал отключений и нажмите кнопку ►.
- 3. С помощью кнопок ▲ и ▼выберите отключение для просмотра, и нажмите ► для просмотра параметров.
- 4. Многократно нажимайте кнопку \blacktriangleleft для закрытия журнала и возврата к главному окну.

Журнал событий

В журнале событий хранятся параметры 99 самых последних событий (действия, предупреждения и отключения) вместе с датой и временем события. Событие 1 — самое последнее, а событие 99 - самое старое. Откройте журнал событий:

- 1. Нажмите Alt, затем F1 Logs.
- 2. Перейдите к пункту Журнал событий и нажмите кнопку ►.

3. С помощью кнопок ▲ и ▼выберите событие для просмотра, и нажмите ▶ для просмотра параметров. Многократно нажимайте кнопку ◀ для закрытия журнала и возврата к главному окну.

Счетчики работы

Счетчики работы накапливают статистику по работе пускателя:

- Время наработки (полное и с последнего сброса счетчика)
- Число пусков (полное и с последнего сброса счетчика)
- Потребленная двигателем мощность (полная и с последнего сброса счетчика)
- Число сбросов тепловой модели.
- Некоторые счетчики (время наработки, число пусков и потребленная двигателем мощность) можно сбросить, только если блокировка настройки (параметр 15В) установлена в *Чтение/запись*. Просмотр счетчиков:
- 1. Нажмите Alt, затем F1 Logs.
- 2. Перейдите к пункту Счетчики и нажмите кнопку .
- 3. Нажимайте кнопки ▲ и ▼ для выбора счетчика. Нажмите ▶ для просмотра параметров.
- 4. Для сброса счетчика нажмите ▶, затем нажмите кнопками ▲ и ▼ выберите *Сброс* или *Не сбрасывать*. Нажмите ▶ для подтверждения действия.

Нажмите 🗲 для закрытия счетчика и возврата к меню журналов.

8. Эксплуатация

8.1. Приоритет команд

Команда УПП не доступно отменяет любую другую команду управления. См. параметр 6А Функция входа А.

Команда *Аварийный пуск* отменяет команды штатного управления, включая автоматический пуск/останов. См. параметр *15С Аварийный режим*.

Автоматический пуск/останов отменяет штатные команды управления (местные, дистанционные или по каналу связи). См. группу параметров *3 Автопуск/останов*.

8.2. Команды пуска, сброса и останова

Устройством плавного пуска можно управлять тремя способами:

- с помощью кнопок панели управления
- с помощью входов дистанционного управления
- по последовательному интерфейсу

Кнопка *L/R* (Местное / Дистанционное) определяет, будет ли УПП реагировать на местное управление (с панели управления) или на дистанционное управление (с дискретных входов).

- Светодиодный индикатор *Local* на панели включен, когда УПП находится в режиме местного управления, и не светится, когда УПП находится в режиме дистанционного управления.
- Светодиодный индикатор *Remote* включен, когда УПП находится в режиме дистанционного управления, и не светится, когда УПП находится в режиме местного управления. Этот индикатор расположен на основном корпусе УПП (позади панели) и виден, только если панель установлена дистанционно.

Управление по каналу последовательной связи всегда возможно в режиме местного управления, и его можно разрешить или запретить в режиме дистанционного управления (параметр *6R Связь- дистанцион-*

ное управление). Для управления по каналу последовательной связи необходим дополнительный модуль связи.

Кнопка Stop на панели работает всегда.

Управление двигателем

Для плавного пуска двигателя нажмите кнопку *Start* на панели или подайте сигнал на соответствующий дискретный вход. Двигатель будет запущен с помощью режима пуска, выбранного в параметре 2A.

Для останова двигателя нажмите кнопку *Stop* на панели или подайте сигнал на соответствующий дискретный вход. Двигатель будет остановлен с помощью режима останова, выбранного в параметре 2*H*.

Для сброса ошибки нажмите кнопку *Reset* на панели или подайте сигнал на соответствующий дискретный вход.

Для остановки двигателя на выбеге независимо от настройки параметра 2H Режим останова одновременно нажмите местные кнопки Stop и Reset. УПП отключит питание от двигателя и разомкнет главный контактор; двигатель остановится выбегом.

Автоматический пуск и останов

УПП можно также сконфигурировать на автоматический пуск и останов. Этот режим доступен только в дистанционном режиме. В местном режиме управления пускатель игнорирует любые настройки автопуска/останова. Для настройки режима автопуска/останова используйте параметры *3A*~*3D*.

8.3. Режимы плавного пуска

Устройства плавного пуска предоставляют несколько методов для управления пуском двигателя. Каждый метод плавного пуска использует собственный главный управляемый параметр.

Режимы плавного пуска	Управляемый параметр Изменяемые рабочие парам		
Линейное нарастание напряжения	Напряжение	Пусковой ток, пусковой момент, ускорение	
Ограничение тока	Ток	Пусковой момент, ускорение	
Управление моментом	Момент	Пусковой ток, ускорение	
Адаптивное управление	Ускорение	Пусковой ток, пусковой момент	

Для получения наилучших результатов выбирайте метод плавного пуска, который прямо управляет самым важным для вашей установки параметром. Обычно УПП используются для ограничения пускового тока двигателя или управляют ускорением или замедлением нагрузки. Пускатель можно настроить на ограничение тока или на адаптивное управление.

Управляемый параметр	Используемый режим	
Пусковой ток двигателя	Ограничение тока	
Ускорение двигателя / нагрузки	Адаптивное управление	

Ограничение тока

Режим ограничения тока является традиционным способом плавного пуска двигателя, при котором ток возрастает от нуля до определенного уровня ограничения и остается на этом уровне, пока двигатель разгоняется.

Режим пуска с ограничением тока является идеальным для установок, в которых пусковой ток надо удерживать не выше заданного уровня.

Нарастание тока

В режиме нарастания тока при плавном пуске происходит нарастание тока в течение установленного времени (2) от начального значения (1) до значения ограничения тока (3).

Пуск с нарастанием тока может быть полезен для установок, в которых:

- Нагрузка может изменяться между пусками (например, конвейер, который может быть разгружен или загружен). Настройте начальное значение тока (параметр 2С) на уровень, достаточный для запуска двигателя с легкой нагрузкой, а ограничение тока (параметр 2D) - на уровень, достаточный для запуска двигателя с тяжелой нагрузкой.
- Нагрузка легко трогается с места, но время пуска нужно растянуть (например, центробежный насос, когда необходимо плавное нарастание давления в трубопроводе).
- Мощность питания ограничена (например, электрогенератор), и необходимо медленно повышать нагрузку для предотвращения перегрузки генератора.

Ток (% от ном. тока двигателя)

- 1. Начальный ток (параметр 2С)
- 2. Время нарастания тока (2В)
- 3. Ограничение тока (2D)
- 4. Ток при прямом пуске

Адаптивное управление пуском

При адаптивном управлении плавным пуском УПП регулирует ток, чтобы запустить двигатель за указанное время по выбранному профилю ускорения.

внимание

Адаптивное управление не может запустить двигатель быстрее, чем прямой пуск от сети. Если время нарастания тока (параметр 2В) меньше, чем время прямого пуска двигателя от сети, то пусковой ток может достичь уровня тока при прямом пуске.

Для каждой установки имеется конкретный профиль пуска, зависящий от характеристик нагрузки и двигателя. Адаптивное управление предоставляет 3 разных пусковых профиля для удовлетворения потребностей разных установок. Выбор профиля, соответствующего характеристикам установки, позволяет достичь равномерного ускорения за все время пуска. Выбор существенно другого профиля адаптивного ускорения может в некоторой степени нейтрализовать собственный профиль установки. УПП отслеживает работу двигателя при каждом пуске, чтобы улучшить управление в последующих пусках.

• Адаптивное управление

Как использовать адаптивное управление для управления режимом пуска:

- 1. Выберите режим Адаптивного управления в меню режима пуска (параметр 2А)
- 2. Настройте нужное время разгона (параметр 2В)
- 3. Выберите нужный адаптивный профиль пуска (параметр 2Е)
- 4. Настройте ограничение тока (параметр 2D) достаточно высоким для обеспечения успешного пуска. Первый пуск с адаптивным управлением будет пуском с ограничением тока. Это позволяет УПП определить характеристики подключенного двигателя. УПП использует полученные данные двигателя при последующих пусках с адаптивным управлением.

Скорость

Профиль адаптивного пуска (2Е):

- 1. Разгон с опережением
- 2. Постоянное ускорение
- 3. Разгон с запаздыванием
- 4. Время пуска (2В)

ПРИМЕЧАНИЕ

Адаптивное управление ускорением управляет нагрузкой в соответствии с запрограммированным профилем. Пусковой ток изменяется согласно выбранному профилю ускорения и запрограммированному времени пуска.

Время

В случае замены двигателя, подключенного к УПП, запрограммированному на пуск и останов по адаптивному управлению, или если пускатель настраивался на другом двигателе перед фактическим монтажом, пускателю нужно определить характеристики нового двигателя. УПП автоматически изучит характеристики двигателя, если изменить один из параметров *1А Ток полной нагрузки двигателя* или *2К Коэффициент адаптивного управления*.

• Как выбрать профиль при адаптивном управлении пуском

Лучший профиль зависит от конкретных параметров каждой установки.

Некоторые нагрузки, например, погружные насосы, не должны работать на низких скоростях. Профиль с ранним ускорением быстро развивает скорость, затем управляет ускорением в остальной части пуска.

•

Адаптивное управление формирует профиль скорости двигателя на заданном отрезке времени. Это может привести к возрастанию уровня тока в сравнении с традиционными методами управления.

Тонкая подстройка адаптивного управления

Если двигатель запускается или замедляется недостаточно плавно, то отрегулируйте коэффициент усиления адаптивного управления (параметр 2К). Настройка усиления определяет, насколько УПП будет изменять дальнейшие пуски и остановы с адаптивным управлением согласно информации от предыдущего пуска. Настройка усиления влияет на управление как пуском, так и остановом.

- Если двигатель слишком быстро ускоряется или замедляется в конце пуска или останова, то увеличьте коэффициент усиления на 5%~10%.
- Если скорость двигателя колеблется при пуске или останове, то немного уменьшите коэффициент усиления.

ПРИМЕЧАНИЕ

внимание

Изменение настройки усиления сбрасывает определенные параметры адаптивного управления пускателя. Первый пуск после изменения усиления будет пуском с ограничением тока.

Толчковый пуск

Толчковый пуск обеспечивает короткий импульс дополнительного крутящего момента в начале пуска, его можно использовать вместе с нарастанием или ограничением тока.

Толчковый пуск может использоваться для пуска нагрузок с большим моментом трогания, которые потом легко разгоняются (например, нагрузки типа маховика в прессах).

Ток (в % от номинального

- 1. Ток толчкового пуска (2G)
- 2. Длительность толчкового пуска (2F)
- Начальный ток (2С)
- 4. Ограничение тока (2D)
- 5. Время нарастания тока (2В)
- 6. Ток при прямом пуске

Устройства плавного пуска предоставляют несколько методов для управления остановом двигателя.

Режимы плавного останова	Результат
Останов выбегом	Естественный останов нагрузки по инерции
Линейное снижение напряжения	Увеличенное время останова
	Увеличенное время останова согласно выбранному профилю замед-
Адаптивное управление	ления
Торможение	Уменьшенное время останова

04737

100%

УПП часто используются в насосных установках для устранения вредных последствий гидравлического удара. Адаптивное управление должно быть желательным методом останова в таких установках.

Останов выбегом

Останов выбегом позволяет двигателю остановиться естественным образом, без управления от УПП. Длительность остановки зависит от типа нагрузки.

Линейное снижение напряжения

Режим снижения напряжения плавно снижает подаваемое на двигатель напряжение за заданное время. Вал двигателя может продолжать вращаться после снижения напряжения до 0.

Линейное снижение напряжения можно использовать в установках, где необходимо увеличить время останова, или избежать выбросов напряжения на питающем генераторе.

Адаптивное управление остановом

При адаптивном управлении плавным остановом УПП регулирует ток так, чтобы остановить двигатель за указанное время по выбранному профилю замедления. Адаптивное управление может быть полезным при необходимости увеличения времени останова нагрузок с малым моментом инерции.

У каждой установки имеется собственный профиль останова, зависящий от характеристик нагрузки и двигателя. Адаптивное управление предоставляет 3 разных профиля останова. Выберите профиль адаптивного управления, оптимальный для вашей установки.

ПРИМЕЧАНИЕ

Адаптивное управление фактически не замедляет двигатель и не может остановить двигатель быстрее останова выбегом. Для сокращения времени останова нагрузок с большой инерцией используйте торможение.

\wedge

внимание

Адаптивное управление формирует профиль скорости двигателя на заданном отрезке времени. Это может привести к возрастанию тока по сравнению с традиционными методами управления.

- Адаптивное управление
- Использование адаптивного управления для контроля останова:
- 1. Выберите режим Адаптивного управления в меню режима останова (2Н)
- 2. Установите нужное время останова (2I)
- 3. Выберите нужный профиль останова (параметр 2J)

Профили останова при адаптивном управлении (параметр 2J):

- 1. Останов с опережением
- 2. Постоянное замедление
- 3. Останов с запаздыванием
- 4. Время останова (21)

Первый останов с адаптивным замедлением будет обычным плавным остановом. Это позволяет УПП определить характеристики подключенного двигателя. УПП использует полученные данные двигателя при последующих остановах с адаптивным управлением.

ПРИМЕЧАНИЕ

Адаптивное управление будет контролировать нагрузку согласно запрограммированному профилю. Ток останова будет изменяться согласно выбранному профилю замедления и времени останова.

В случае замены двигателя, подключенного к УПП, запрограммированному на пуск и останов по адаптивному управлению, или если пускатель настраивался на другом двигателе перед фактическим монтажом, пускателю нужно определить характеристики нового двигателя. УПП автоматически изучит характеристики двигателя, если изменить один из параметров *1А Ток полной нагрузки двигателя* или *2К Коэффициент адаптивного управления*.

• Останов насоса

Гидравлические характеристики насосных систем могут заметно различаться. Эти различия означают, что идеальный профиль замедления и время останова у каждой установки будет свой. В таблице приведены советы по выбору профилей замедления адаптивного управления, но мы рекомендуем протестировать три профиля и выбрать наилучший для вашего случая.

Адаптивный профиль останова	Применение	
	Системы с высоким напором, где даже небольшое снижение скорости	
Позднее замедление	двигателя/насоса может привести к быстрому реверсу потока на об-	
	ратный	
	Установки с напором от низкого до среднего и с большим расходом,	
постоянное замедление	где перекачиваемая среда имеет высокий кинетический момент	
	Открытые насосные системы, в которых перекачиваемая среда долж-	
Раннее замедление	на стекать назад через насос, не вызывая его обратного вращения	

Торможение постоянным током

Торможение постоянным током снижает время остановки двигателя.

Во время торможения постоянным током двигатель может издавать повышенный уровень шума. В данном случае это нормальное явление. Если выбрано торможение, то УПП подает постоянный ток для замедления двигателя.

Торможение УПП:

- Не нужен тормозной контактор постоянного тока
- Управление по всем 3 фазам обеспечивает равномерное распределение тормозных токов и сопутствующего нагрева в двигателе.

внимание

Если задан слишком высокий тормозной момент, то двигатель остановится до окончания времени торможения, после чего будет без нужды подвергаться нагреву, что может привести к его повреждению. Для обеспечения безопасной работы пускателя и двигателя нужно тщательно сконфигурировать параметры.

Высокий момент торможения может привести к появлению очень высокого тока при останове двигателя вплоть до тока прямого пуска от сети. Убедитесь, что в цепи двигателя установлены предохранители нужной величины.

внимание

Работа с торможением постоянным током приводит к большему нагреву двигателя, чем в расчете по тепловой модели. Если вы применяете торможение постоянным током, то установите термистор двигателя или задайте необходимую величину задержки повторного запуска (параметр 4M).

Торможение происходит в два этапа:

- Предварительное: обеспечивает средний тормозной момент для замедления двигателя до скорости, с которой можно успешно включать полное торможение (примерно 70% от номинальной скорости).
- Полное: обеспечивает максимальный тормозной момент, но неэффективен при скорости больше примерно 70% от номинальной.

Как сконфигурировать УПП для работы с торможением:

- 1. Настройте параметр 2I на нужную длительность времени останова (1). Это полное время торможения, и оно должно быть намного больше времени торможения (параметр 2M), чтобы этап предварительного замедления выбегом снизил скорость двигателя примерно до 70%. Если время торможения будет слишком коротким, торможение не будет успешным и двигатель остановится выбегом.
- 2. Настройте время торможения (параметр 2M) примерно на одну четверть от запрограммированного времени останова. Это время реального торможения (2).
- 3. Отрегулируйте тормозной момент (параметр 2L) для достижения нужных параметров останова. При слишком низком значении момента двигатель не остановится полностью и в конце периода торможения будет останавливаться выбегом.

внимание

При использовании торможения постоянным током силовое питание должно быть подсоединено к УПП (входные клеммы L1, L2, L3) в прямой последовательности фаз, и параметр 4G *Чередование фаз* должен быть настроен на *Только прямая*.

ПРИМЕЧАНИЕ

В случае нагрузок, которые могут изменяться между циклами торможения, установите датчик нулевой скорости, чтобы УПП заканчивало торможение постоянным током после останова двигателя. Это устраняет ненужный нагрев двигателя.

Более подробная информация о работе УПП с внешним датчиком скорости (например, в установках с изменяемой нагрузкой в цикле торможения) приведена в главе *Торможение постоянным током с* внешним датчиком нулевой скорости.

8.5. Работа в толчковом режиме

Толчковый режим используется для вращения двигателя на малой скорости, чтобы установить нужное положение нагрузки или провести техобслуживание. Двигатель можно вращать толчками вперед или назад.

внимание

Низкую скорость работы нельзя использовать продолжительно из-за ухудшенного охлаждения двигателя.

Толчковый режим приводит к большему нагреву двигателя, чем в расчете по тепловой модели. Если вы применяете толчковый режим, то установите термистор двигателя или задайте необходимую величину задержки повторного запуска (параметр 4M).

ПРИМЕЧАНИЕ

Плавный пуск и плавный останов недоступны в толчковом режиме.

Толчковый режим доступен только для основного двигателя.

Максимальный доступный момент в толчковом режиме равен примерно 50%~75% от момента полной нагрузки (МПН) двигателя в зависимости от двигателя. Момент для толчкового режима назад равен примерно от 25%~50% от момента полной нагрузки (МПН).

Параметр 15E Момент толчков определяет, какую часть максимального доступного момента толчкового режима УПП применит для двигателя.

ПРИМЕЧАНИЕ

Настройка параметра 15Е выше 50% может усилить вибрацию вала.

- 1. Номинальный момент двигателя (МПН)
- 2. Максимальный момент для толчкового режима вперед
- 3. Максимальный момент для толчкового режима назад

Для активации толчкового режима используйте либо программируемый вход (смотрите параметры 6А и 6F (работает только в режиме дистанционного управления)), либо кнопку действия (параметры 8В и 8С).

Для остановки работы в толчковом режиме выполните одно из следующих действий:

- Снимите команду толчкового режима.
- Нажмите кнопку **STOP** на панели.

Толчковый режим возобновится по окончании задержки перезапуска, если команда толчкового режима еще будет присутствовать. Все другие команды, кроме указанных выше, игнорируются в толчковом режиме.

8.6. Подключение внутри треугольника

При 6-проводном подключении треугольником функции адаптивного управления, толчкового режима и PowerThrough не поддерживаются. Если эти функции запрограммированы в конфигурации пускателя с подключением внутри треугольника, то их поведение описано ниже:

Адаптивное управление пуском	Пускатель выполняет пуск с ограничением тока.	
Адаптивное управление остано-	Пускатель выполняет плавный останов снижением напряжения, если	
вом	параметр 21 Время останова >0 сек. Если параметр 21 установлен рав-	
	ным 0 сек, то пускатель выполняет останов на выбеге.	
Толчковый режим	Пускатель подает предупреждение с сообщением об ошибке "Опция не	
	поддерживается".	
Тормоз	Пускатель выполняет останов по выбегу.	
PowerThrough	Пускатель отключается с сообщением об ошибке "Замыкание Lx-Tx".	

ПРИМЕЧАНИЕ

При подключении внутри треугольника дисбаланс тока является единственной защитой от потери фазы, действующей при работе. Не отключайте защиту дисбаланса тока (параметр 4H) при подключении внутри треугольника.

ПРИМЕЧАНИЕ

При подсоединении внутренним треугольником введите номинальный ток двигателя (ТПН) для параметра 1А. УПП автоматически определяет подсоединение двигателя в линию или по внутреннему треугольнику и вычисляет нужный уровень тока внутреннего треугольника.

9. Меню программирования

В любой момент вы можете вызвать меню программирования, в том числе и при работе УПП. Любые изменения в профиле пуска сразу же вступают в силу.

В меню программирования имеются 4 подменю:

Быстрая настройка	Меню быстрой настройки предоставляет доступ к параметра, нужным для конфигу-
	рирования УПП в самых обычных установках. В меню быстрой настройки предлага-
	ется значение для каждого параметра, но вы можете изменить их при необходимо-
	сти.

- **Стандартное меню** Стандартное меню предоставляет доступ к обычно используемым параметрам, позволяя пользователю настроить УПП, как требуется в установке.
- Расширенное меню Расширенное меню предоставляет доступ ко всем программируемым параметрам УПП, позволяя опытному пользователю использовать преимущества дополнительных функций.
- **Загруз./сохр.парам.** Меню загрузки/сохранения параметров позволяет сохранить текущие значения параметров в файле, загрузить параметры из ранее сохраненного файла, или сбросить все параметры на заводские значения по умолчанию.

9.1. Меню программирования

Меню программирования позволяет просматривать и изменять программируемые параметры, которые управляют работой УПП.

Для входа в меню программирования нажмите кнопку MENU из режима просмотра окна контроля.

Порядок навигации по меню программирования:

- для прохождения через группы параметров нажимайте кнопку 🔺 или 🔻.
- для открытия подменю нажмите кнопку .
- для просмотра параметров группы нажмите кнопку .
- для возврата на предыдущий уровень нажмите кнопку 4.
- для закрытия меню программирования многократно нажмите кнопку **4**.

Как изменить значение параметра:

- перейдите к нужному параметру в меню программирования и нажмите > для входа в меню редактирования.
- используйте кнопки ▲ и ▼ для изменения значения параметра. Однократное нажатие ▲ или ▼ увеличивает или уменьшает значение на единицу. Если кнопку удерживать нажатой дольше 5 секунд, то значение изменяется быстрее.
- для сохранения изменений нажмите **MENU**. Показанное на дисплее значение будет сохранено и панель вернется к списку параметров.
- для отмены изменений нажмите **EXIT**. Панель запросит подтверждение, затем вернется к списку параметров без сохранения изменений.

9.2. Блокировка настроек

Вы можете заблокировать меню программирования, чтобы запретить пользователям изменять настройки параметров. Блокировку настроек можно включать и отключать с помощью параметра 15В.

Для блокировки меню программирования:

- 1. Откройте меню программирования (MENU).
- 2. Откройте расширенное меню.
- 3. Выберите Усиленное.
- 4. Введите код доступа.
- 5. Выберите параметр 15В блокировка настроек
- 6. Выберите и сохраните Только чтение.

Если пользователь попытается изменить значение параметра при включенной блокировке настроек, то будет выведено сообщение об ошибке:

Доступ запрещен

Вкл. блокир. настройки

9.3. Код доступа

Важные параметры (параметры группы 15 и выше) защищены 4-значным кодом доступа, который запрещает неуполномоченным пользователям просматривать и изменять настройки параметров.

Если пользователь пытается войти в группу параметров ограниченного доступа, панель запрашивает код доступа. Код доступа запрашивается один раз в сеансе программирования и авторизация действует, пока пользователь не закроет меню.

Для ввода кода доступа с помощью кнопок ◀ и ▶ выберите цифру и измените ее значение с помощью кнопок ▲ и ▼. Когда все четыре цифры составят код доступа, нажмите **MENU**. Панель покажет подтверждающее сообщение перед продолжением работы.

Для изменения кода доступа используйте параметр 15А.

Средства моделирования и функции сброса счетчиков также защищены кодом доступа.

Код доступа по умолчанию равен 0000.

9.4. Быстрая настройка

Меню быстрой настройки упрощает конфигурирование УПП для обычных установок. УПП выбирает параметры согласно установке и предлагает типичные настройки; вы можете отрегулировать каждый параметр точно под ваши требования.

Всегда настраивайте параметр 1А Ток полной нагрузки двигателя согласно номинальному току на шильдике двигателя. Предлагаемое значение - минимальный ток полной нагрузки пускателя.

На дисплее выделенные значения - это предлагаемые значения, а значение со значком ≻ - установленное значение.

Установка	Параметр	Предложенное значение
Центробежный насос	Ток полной нагрузки двигателя	Зависит от модели
	Режим пуска	Адаптивное управление
	Адаптивный профиль пуска	Раннее ускорение
	Время пуска	10 секунд
	Режим останова	Адаптивное управление
	Адаптивный профиль останова	Позднее замедление
	Время останова	15 секунд
Погружной насос	Ток полной нагрузки двигателя	Зависит от модели
	Режим пуска	Адаптивное управление
	Адаптивный профиль пуска	Раннее ускорение
	Время пуска	5 секунд
	Режим останова	Адаптивное управление
	Адаптивный профиль останова	Позднее замедление
	Время останова	5 секунд
Вентилятор с заслонкой	Ток полной нагрузки двигателя	Зависит от модели
	Режим пуска	Неизмен. ток
	Предел тока	350%
Вентилятор без заслонки	Ток полной нагрузки двигателя	Зависит от модели
	Режим пуска	Адаптивное управление
	Адаптивный профиль пуска	Постоянное ускорение
	Время пуска	20 секунд
	Максимальное время пуска	30 секунд
	Время блокировки ротора	20 секунд

Винтовой компрессор Ток полной нагрузки двигателя		Зависит от модели
	Режим пуска	Неизмен. ток
	Время пуска	5 секунд
	Предел тока	400%
Поршневой компрессор	Ток полной нагрузки двигателя	Зависит от модели
	Режим пуска	Неизмен. ток
	Время пуска	5 секунд
	Предел тока	450%
Конвейер	Ток полной нагрузки двигателя	Зависит от модели
	Режим пуска	Неизмен. ток
	Время пуска	5 секунд
	Предел тока	400%
	Режим останова	Адаптивное управление
	Адаптивный профиль останова	Постоянное замедление
	Время останова	10 секунд
Конусная дробилка	Ток полной нагрузки двигателя	Зависит от модели
	Режим пуска	Неизмен. ток
	Время пуска	10 секунд
	Предел тока	400%
	Максимальное время пуска	30 секунд
	Время блокировки ротора	20 секунд
Щековая дробилка	Ток полной нагрузки двигателя	Зависит от модели
	Режим пуска	Неизмен. ток
	Время пуска	10 секунд
	Предел тока	450%
	Максимальное время пуска	40 секунд
	Время блокировки ротора	30 секунд

9.5. Стандартное меню

Стандартное меню предоставляет доступ к часто используемым параметрам, позволяя пользователю настроить УПП, как требуется в установке. Сведения об отдельных параметрах смотрите в главе *Описание параметров*.

		Группа параметров	Настройка по умолчанию
1		Данные двигателя 1	
	1A	Ток полной нагрузки двигателя	Зависит от модели
2		Реж. пуска/остан. 1	
	2A	Режим пуска	Неизмен. ток
	2B	Время пуска по рампе	10 c
	2C	Начальный ток	350%
	2D	Предел тока	350%
	2H	Режим останова	Останов выбегом
	21	Время останова	0 c
3		Автопуск/останов	
	3A	Автозапуск: Тип	Откл.
	3B	Автозапуск: Время	1 мин
	3C	Автостоп: Тип	Откл.
	3D	Автостоп: Время	1 мин
4		Настройка защит	
	4A	Максимальное время пуска	20 c
	4C	Минимальный ток	20 %
	4D	Задержка минимального тока	5 c
	4E	Мгновенный максимальный ток	400 %
	4F	Задержка мгновенного максимального тока	0 c
	4G	Чередование фаз	Любая последовательность
6		Входы	

	6A	Вход А: Функция	Выбор набора параметров
	6B	Вход А: Имя	Вход отключения
	6C	Вход А: Активность	Всегда активен
	6D	Задержка отключения по входу А	0 c
	6E	Задержка приема сигнала отключения по входу А	0 c
	6F	Вход В: Функция	Отключение по НР входу
	6G	Вход В: Имя	Вход отключения
	6H	Вход В: Активность	Всегда активен
	61	Задержка отключения по входу В	0 c
	6J	Задержка приема сигнала отключения по входу В	0 c
7		Выходы	
	7A	Реле А: Функция	Главный контактор
	7B	Реле А: Задержка замыкания	0 c
	7C	Реле А: Задержка размыкания	0 c
	7D	Реле В: Функция	Работа
	7E	Реле В: Задержка замыкания	0 c
	7F	Реле В: Задержка размыкания	0 c
	7G	Реле С: Функция	Отключение
	7H	Реле С: Задержка замыкания	0 c
	71	Реле С: Задержка размыкания	0 c
	7M	Сигнал пониженного тока	50%
	7N	Сигнал повышенного тока	100%
	70	Сигнал температуры двигателя	80%
8		Дисплей	
	8A	Язык	English
	8B	Действие кнопки F1	Настр. автозап./ост.
	8C	Действие кнопки F2	Нет
	8D	Отображение А или кВт	Ток
	8E	Экран - сверху слева	Состояние пускателя
	8F	Экран - сверху справа	Пусто
	8G	Экран - снизу слева	Наработка в часах
	8H	Экран - снизу слева	Аналоговый вход

9.6. Расширенное меню

Расширенное меню предоставляет доступ ко всем программируемым параметрам УПП.

		Группа параметров	Настройка по умолчанию
1		Данные двигателя 1	
	1A	Ток полной нагрузки двигателя	Зависит от модели
	1B	Время блокировки ротора	0м:10с
	1C	Ток блокированного ротора	600%
	1D	Сервис-фактор двигателя	105%
2		Реж. пуска/остан. 1	
	2A	Режим пуска	Неизмен. ток
	2B	Время пуска по рампе	10 c
	2C	Начальный ток	350%
	2D	Предел тока	350%
	2E	Адаптивный профиль пуска	Постоянное ускорение
	2F	Время ускоренного пуска	0000мс
	2G	Ток ускоренного пуска	500%
	2H	Режим останова	Останов выбегом
	21	Время останова	0 c
	2J	Адаптивный профиль останова	Постоянное замедление
	2K	Коэффициент адаптивного управления	75%
	2L	Тормозной момент	20%
	2M	Время торможения	0м:01с

3		Автопуск/останов	
	3A	Автозапуск: Тип	Откл.
	3B	Автозапуск: Время	00h:01m
	3C	Автостоп: Тип	Откл.
	3D	Автостоп: Время	00h:01m
4		Настройка защит	
	4A	Максимальное время пуска	20 c
	4B	Максимальное время пуска 2	20 c
	4C	Минимальный ток	20 %
	4D	Залержка минимального тока	50
	4F	Игновенный максимальный ток	400 %
-	4F	Залержка мгновенного максимального тока	
	4G	Черелование фаз	Любая последовательность
-	4H	Лисбаланстока	30%
	41	Залержка реакции на лисбаланстока	0M:03C
	11	Проверка частоты	
	4J		
-	4K //		<u>- эгц</u> Ом:01с
	46		
	41VI 4 NI		
-	40	Проверка температуры двигателя	
-	40		
	40	Задержка реакции на короткое замыкание на землю	UM.USC
	40	Зарезервирован	
	4R 4C	Зарезервирован	
	43 4T	Зарезервирован	
-	41		
5	ГА	Автосорос аварии	
	58	Максимальное число автосоросов	
	50	Задержка сороса групп А и в	05
6	50	Задержка сороса группы с	05M
0	6.4	Входы	
	6A	Вход А: Функция	Выбор набора параметров
	6B	Вход А: Имя	Вход отключения
	60	Вход А: Активность	Всегда активен
	6D	Задержка отключения по входу А	00
	6E	Задержка приема сигнала отключения по входу А	
	61	Вход В: Функция	Отключение по НР входу
-	6G	Вход В: Имя	Вход отключения
	6H	Вход В: Активность	Всегда активен
	61	Задержка отключения по входу В	0 c
	6J	Задержка приема сигнала отключения по входу В	
	6K	Вход С: Функция	Откл.
-	6L	Вход D: Функция	Откл.
-	6M	Нормальное состояние дистанционного сброса	Нормально замкнут
	6N	Отключение по аналоговому входу	Без отключения
	60	Шкала аналогового входа	2-10B
	6P	Уставка отключения по аналоговому входу	50%
-	6Q	Местное/Дистанционное	Мест./Дист. всегда
_	6R	Связь - дистанционное управление	Включено упр.в дист.реж.
7		Выходы	
	/A	Реле А: Функция	і лавный контактор
	/B	Реле А: Задержка замыкания	UC
	70	Реле А: Задержка размыкания	
	7D 75	Реле В: Функция	Работа
1	/Ł	Pene в: Задержка замыкания	UC

	7F	Реле В: Задержка размыкания	0 c
	7G	Реле С: Функция	Отключение
	7H	Реле С: Задержка замыкания	0 c
	71	Реле С: Задержка размыкания	0 c
	7J	Реле D: Функция	
	7K	Реле Е: Функция	
	7L	Реле F: Функция	
	7M	Сигнал пониженного тока	50%
	7N	Сигнал повышенного тока	100%
	70	Сигнал температуры двигателя	80%
	7P	Аналоговый выход А	Ток (% от ТПН)
	7Q	Аналоговый выход А: Шкала	4-20 мА
	7R	Аналоговый выход А: Максимум	100%
	7S	Аналоговый выход А: Минимум	000%
	7T	Аналоговый выход В:	Ток (% от ТПН)
	7U	Аналоговый выход В: Шкала	4-20 мА
	7V	Аналоговый выход В: Максимум	100%
	7W	Аналоговый выход В: Минимум	000%
8		Дисплей	
	8A	Язык	English
	8B	Действие кнопки F1	Настр. автозап./ост.
	8C	Действие кнопки F2	Нет
	8D	Отображение А или кВт	Ток
	8E	Экран - сверху слева	Состояние пускателя
	8F	Экран - сверху справа	Пусто
	8G	Экран - снизу слева	Наработка в часах
	8H	Экран - снизу слева	Аналоговый вход
	81	Данные графика	Ток (% от ТПН)
	8J	Время графика	10c
	8K	Максимум графика	400%
	8L	Минимум графика	000%
	8M	Калибровка тока	100%
	8N	Номинальное напряжение сети	400B
	80	Калибровка напряжения	100%
9		Данные двигателя 2	
	9A	Двойная тепловая модель	Одинарная
	9B	Ток полной нагрузки двигателя	Зависит от модели
	9C	Время блокировки ротора	0м:10с
	9D	Ток блокированного ротора	600%
1	9F	Сервис-фактор двигателя	105%

10		Реж. пуска/остан. 2	
	10A	Режим пуска 2	Неизмен. ток
	10B	Время пуска по рампе 2	10 c
	10C	Начальный ток 2	350%
	10D	Предел тока 2	350%
	10E	Адаптивный профиль пуска 2	Постоянное ускорение
	10F	Время ускоренного пуска 2	0000мс
	10G	Ток ускоренного пуска 2	500%
	10H	Режим останова 2	Останов выбегом
	101	Время останова 2	0 c
	10J	Адаптивный профиль останова 2	Постоянное замедление
	10K	Коэффициент адаптивного управления 2	75%
	10L	Тормозной момент 2	20%
	10M	Время торможения 2	0м:01с
11		Температура с RTD	

	11A	RTD/PT100 A °C	50 °C (122 °F)
	11B	RTD/PT100 B °C	50 °C (122 °F)
	11C	RTD/PT100 C °C	50 °C (122 °F)
	11D	RTD/PT100 D °C	50 °C (122 °F)
	11E	RTD/PT100 E °C	50 °C (122 °F)
	11F	RTD/PT100 F °C	50 °C (122 °F)
	11G	RTD/PT100 G °C	50 °C (122 °F)
12		Двигатель с фазным ротором	
	12A	Время разгона / замедления для двигателя 1	Одно
	12B	Время разгона / замедления для двигателя 2	Одно
	12C	Время переключения	150мс
	12D	Уровень торможения	50%
15		Дополнительное меню (требуется код доступа. Заводской: 000)0)
	15A	Код доступа	0000
	15B	Блокировка настроек	Чтение/запись
	15C	Аварийный пуск	Запрещен
	15D	Работа при КЗ тиристора	Только 3-фазное управление
	15E	Момент в толчковом режиме	50%
16		Функции защиты	
	16A	Перегрузка двигателя	Отключение пускателя
	16B	Максимальное время пуска	Отключение пускателя
	16C	Минимальный ток	Отключение пускателя
	16D	Мгновенный максимальный ток	Отключение пускателя
	16E	Дисбаланс тока	Отключение пускателя
	16F	Частота	Отключение пускателя
	16G	Отключение по сигналу на входе А	Отключение пускателя
	16H	Отключение по сигналу на входе В	Отключение пускателя
	161	Термистор двигателя	Отключение пускателя
	16J	Таймаут связи	Отключение пускателя
	16K	Отключение по связи с сетью	Отключение пускателя
	16L	Перегрев радиатора	Отключение пускателя
	16M	Батарея/часы	Отключение пускателя
	16N	Короткое замыкание на землю	Отключение пускателя
	160	RTD/PT100 A	Отключение пускателя
	16P	RTD/PT100 B	Отключение пускателя
	16Q	RTD/PT100 C	Отключение пускателя
	16R	RTD/PT100 D	Отключение пускателя
	16S	RTD/PT100 E	Отключение пускателя
	16T	RTD/PT100 F	Отключение пускателя
	16U	RTD/PT100 G	Отключение пускателя
	16V	Пониженное напряжение	Отключение пускателя
	16W	Повышенное напряжение	Отключение пускателя
	16X	Низкое напряжение цепей управления	Отключение пускателя
20		Ограниченный доступ	
		Только для производителя	

9.7. Загрузка и сохранение параметров

Для входа в меню Загрузка/сохранение параметров нужно ввести код доступа, оно позволяет пользователям:

- Загрузить в параметры УПП заводские значения по умолчанию.
- Заново загрузить ранее сохраненные параметры из внутреннего файла.
- Сохранить текущие настройки параметров во внутреннем файле.

Помимо заводских настроек по умолчанию в УПП можно сохранить два определяемых пользователем файла параметров. Эти файлы содержат значения по умолчанию, пока пользователь не сохранит свои данные.

Как загрузить или сохранить настройки параметров:

- 1. Откройте меню программирования.
- 2. Перейдите к пункту Загрузка/сохранение настроек и нажмите кнопку .
- 3. Перейдите к нужной функции и нажмите кнопку .

4. В ответ на запрос подтверждения выберите ДА для подтверждения или НЕТ для отмены и затем **MENU** для загрузки/сохранения выбора.

После завершения операции на экран кратковременно выводится подтверждающее сообщение и затем он возвращается к окнам состояния.

ПРИМЕЧАНИЕ

Сохраненные файлы и текущие рабочие настройки записываются как в панель, так и в УПП. Панель предложит вам синхронизировать настройки каждый раз, когда она подключена к новому УПП.

9.8. Описание параметров

1. Данные двигателя 1

Параметры в разделе *Данные двигателя* 1 позволяют сконфигурировать УПП оптимально для подключенного двигателя. Эти параметры описывают рабочие характеристики двигателя и позволяют УПП моделировать температуру двигателя.

		_
I	_	_ 1
	_	_
	_	-
	_	_

ПРИМЕЧАНИЕ

При подсоединении внутренним треугольником введите номинальный ток двигателя (ТПН) для параметра 1А. УПП автоматически определяет подсоединение двигателя в линию или по внутреннему треугольнику и вычисляет нужный уровень тока внутреннего треугольника.

1А – Номинальный ток двигателя

Диапазон: Зависит от модели

Описание: Согласует пускатель с номинальным током подключенного двигателя. Введите значение номинального тока с шильдика двигателя.

1В – Время блокировки ротора

Диапазон: 0:01 - 2:00 (минут:секунд) По умолчанию: 10 секунд Описание: Настраивает максимальное время, когда двигатель из холодного состояния может получать ток заторможенного ротора до перегрева. Настройте согласно паспорту двигателя.

1С - Ток блокировки ротора

Диапазон: 400% - 1200% от номинального тока двигателя По умолчанию: 600% Описание: Задает ток заблокированного ротора подключенного двигателя в процентах от номинального тока. Настройте согласно паспорту двигателя.

1D - Сервис-фактор двигателя

Диапазон: 100% - 130% Описание: Настраивает сервис-фактор двигателя, используемый в тепловой модели. Если двигатель работает при токе полной нагрузки, то он достигает 100%. Настройте согласно паспорту двигателя.

ПРИМЕЧАНИЕ

Параметры 1С, 1В и 1D определяют величину тока отключения для защиты двигателя от перегрузки. Настройки параметров 1С, 1В и 1D по умолчанию обеспечивают защиту двигателя от перегрузки: класс 10, ток отключения 105% от номинального, или эквивалентный.

2. Режим пуска/останова 1

2А – Режим пуска

Опции: Неизмен. ток (по умолчанию) Адаптивное управление

Описание: Выбирает режим плавного пуска.

2В - Время разгона

Диапазон: 1 - 180 (секунд)

Загруз./сохр.парам.

Загруз.заводск.настр.

Загруз.заводск.настр. Нет Да
Описание: Задает полное время разгона для пуска с адаптивным управлением или время разгона для пуска с нарастанием тока (от начального тока до предела тока).

2С - Начальный ток

Диапазон: 100% - 600% от номинального По умолчанию: 350% Описание: Задает уровень начального пускового тока для пуска с нарастанием тока в процентах от номинального тока двигателя. Настройте так, чтобы двигатель начал ускоряться сразу же после активации пуска. Если пуск с нарастанием тока не нужен, настройте начальный ток равным пределу тока.

2D – Предел тока

Диапазон: 100% - 600% от номинального По умолчанию: 350% Описание: Настраивает предел тока для режимов плавного пуска с ограничением тока и нарастанием тока в процентах от номинального тока двигателя.

2Е - Адаптивный профиль пуска

Опции: Раннее ускорение Постоянное ускорение (по умолчанию) Позднее ускорение

Описание: Выбирает, какой профиль УПП будет использовать для плавного пуска с адаптивным управлением.

2F - Время толчкового пуска

Диапазон: 0 – 2000 миллисекунд По умолчанию: 0000 миллисекунд Описание: Задает длительность толчкового пуска. Значение 0 запрещает толчковый пуск.

2G - Ток толчкового пуска

Диапазон: 100% - 700% от номинального Описание: Задает уровень тока толчкового пуска.

внимание

При толчковом пуске механическое оборудование подвергается высоким уровням крутящего момента. Перед использованием этой функции убедитесь, что двигатель, нагрузка и муфты могут выдержать этот высокий крутящий момент.

2Н – Режим останова

Опции: Останов выбегом (по умолчанию) Плавное снижение напряжения Адаптивное управление Тормоз

Описание: Выбирает режим останова.

2I – Время останова

Диапазон: 0:00 - 4:00 (минут:секунд)

По умолчанию: 0 секунд

По умолчанию: 500%

Описание: Задает время для плавного останова двигателя с помощью плавного снижения напряжения или адаптивного управления. Настраивает полное время останова при использовании торможения.

Если установлен главный контактор, то он должен оставаться замкнутым до окончания времени останова. Используйте одно из программируемых реле для управления главным контактором.

2J - Адаптивный профиль останова

Опции: Раннее замедление

> Постоянное замедление (по умолчанию) Позднее замедление

Описание: Выбирает, какой профиль УПП будет использовать для плавного останова с адаптивным управлением.

2К - Коэффициент адаптивного управления

Диапазон: 1% - 200%

По умолчанию: 75% Описание: Регулирует качество работы адаптивного управления. Эта настройка влияет на управление как пуском, так и остановом.

ПРИМЕЧАНИЕ

Мы рекомендуем оставить значение этого коэффициента по умолчанию и изменять ее только в случае неудовлетворительной работы.

Если двигатель слишком быстро ускоряется или замедляется в конце пуска или останова, то увеличьте коэффициент на 5%~10%. Если скорость двигателя колеблется при пуске или останове, то немного уменьшите его значение.

2L - Тормозной момент

Диапазон: 20% - 100% По умолчанию: 20% Описание: Настраивает величину тормозного момента, который УПП использует для замедления двигателя.

2М - Время торможения

Диапазон: 1 - 30 (секунд) По умолчанию: 1 секунда Описание: Задает длительность торможения постоянным током во время останова.

ПРИМЕЧАНИЕ

Параметр 2М используется совместно с параметром 2І. См. Торможение постоянным током.

3. Автоматический пуск/останов

УПП можно запрограммировать на автоматический пуск и останов после указанной задержки или в указанное время суток. Автопуск и автоостанов можно настроить отдельно.

Функция автопуск/останов доступна только в дистанционном режиме. В местном режиме управления УПП игнорирует любые настройки автопуска/останова.

внимание

Таймер автозапуска имеет приоритет над всеми другими режимами управления. Двигатель может быть запущен без предупреждения.

ПРЕДУПРЕЖДЕНИЕ

Эту функцию не следует использовать вместе с дистанционным управлением по 2-проводной схеме.

УПП принимает команды пуска и останова от дистанционных входов или по сети последовательной связи. Для запрета местного или дистанционного управления используйте параметр 6Q. Если автопуск разрешен, и пользователь находится в системе меню, то автопуск станет активным после таймаута в меню (если за пять минут не обнаружено нажатия кнопок).

ЗА – Тип автозапуска

Опции: Откл. (по умолчанию): УПП не выполняет автопуск. Таймер: УПП выполнит автопуск после задержки после очередного останова, как указано в параметре 3B. Часы: УПП выполнит автопуск во время, запрограммированное в параметре 3B.

Описание: Выбирает, будет ли УПП выполнять автозапуск после указанной задержки или в определенное время суток.

3В - Время автозапуска

Диапазон: 0:01 - 24:00 (часов:минут) По умолчанию: 1 минута Описание: Настройка времени для автозапуска УПП, в формате 24 часа.

ЗС – Тип автоостанова

Опции: Откл. (по умолчанию) УПП не выполняет автоостанов.
Таймер: УПП выполнит автоостанов после задержки после очередного пуска, как указано в параметре 3D.
Часы: УПП выполнит автоостанов во время, запрограммированное в параметре 3D.

часы. Уппт выполнит автоостанов во время, запрограммированное в параметре 5D. Описание: Выбирает, будет ли УПП выполнять автоостанов после указанной задержки, или в определенное время суток.

3D - Время автоостанова

Диапазон: 0:01 - 24:00 (часов:минут) По умолчанию: 1 минута Описание: Настройка времени для автоостанова УПП, в формате 24 часа.

4. Защита настроек

Эти параметры определяют, когда активируются функции защиты УПП. Уставку активации для каждой функции защиты можно настроить по необходимости.

УПП реагирует на события защиты отключением, подачей предупреждения или записью события в журнал событий. Реакция определяется настройками параметров 16-й группы Действие защиты Операции защиты. Реакцией по умолчанию является отключение.

внимание

Настройки защиты очень важны для безопасной работы УПП и двигателя. Отключение защиты подвергает риску поломки всю установку, и это допустимо только в чрезвычайной ситуации.

4А, 4В - Максимальное время пуска

Максимальное время пуска - это максимальное время, когда УПП пытается запустить двигатель. Если ток двигателя не падает до номинального значения через запрограммированное время, то пускатель отключается. Настройте это значение немного больше, чем нужно для обычного исправного пуска. Значение 0 отключает защиту по максимальному времени пуска.

Диапазон: 0:00 - 4:00 (минут:секунд) По умолчанию: 20 секунд Описание: Параметр 4А настраивает время для основного двигателя, а параметр 4В (Максимальное время пуска 2) настраивает время для второго двигателя.

4С - Минимальный ток

Диапазон: 0% - 100% По умолчанию: 20% Описание: Настраивает уставку отключения по защите минимального тока в процентах от номинального тока двигателя. Настройте на уровень между нормальным рабочим диапазоном двигателя и током холостого хода (обычно 25% - 35% от номинального тока). Значение 0% отключает защиту минимального тока.

4D - Задержка минимального тока

Диапазон: 0:00 - 4:00 (минут:секунд) По умолчанию: 5 секунд Описание: Замедляет реакцию УПП на минимальный ток, устраняя отключения из-за кратковременных колебаний.

4Е - Мгновенный максимальный ток

Диапазон: 80% - 600% от номинального тока По умолчанию: 400%

Описание: Настраивает уставку отключения по защите мгновенного максимального тока, в процентах от номинального тока двигателя.

4F - Задержка мгновенного максимального тока

Диапазон: 0:00 - 1:00 (минут:секунд) По умолчанию: 0 секунда Описание: Замедляет реакцию УПП на максимальный ток, устраняя отключения из-за кратковременных колебаний максимального тока.

4G - Чередование фаз

Опции: Любая последовательность (по умолчанию) Только прямая Только обратная

Описание: Выбирает, какое чередование фаз УПП допускает при пуске. Во время предпусковых проверок пускатель определяет чередование фаз на своих входах питания и отключается, если фактическое чередование не соответствует выбранному варианту.

4Н - Дисбаланс тока

Диапазон: 10% - 50%

По умолчанию: 30% Описание: Настраивает уставку отключения по защите от дисбаланса тока.

4I - Задержка дисбаланса тока

По умолчанию: 3 секунд Диапазон: 0:00 - 4:00 (минут:секунд) Описание: Замедляет реакцию УПП на дисбаланс тока, устраняя отключения из-за кратковременных колебаний.

4Ј - Проверка частоты

Пуск/работа (по умолчанию) Только работа Описание: Определяет, будет ли пускатель следить за отключением по частоте и когда.

4К - Отклонение частоты

Опции: ± 2 Гц ± 5 Гц (по умолчанию) ± 10 Гц ± 15 Гц

Описание: Задает допуск УПП на отклонение частоты.

4L - Задержка отключения по частоте

Диапазон: 0:01 - 4:00 (минут:секунд) По умолчанию: 1 секунда Описание: Замедляет реакцию УПП на отклонение частоты, устраняя отключения из-за кратковременных колебаний.

ПРИМЕЧАНИЕ

При снижении частоты сети ниже 35 Гц или возрастании выше 75 Гц происходит немедленное отключение УПП.

внимание

Длительная эксплуатация двигателя за пределами допустимого диапазона частоты может вызвать повреждение и преждевременный отказ.

4M - Задержка повторного пуска

Диапазон: 00:01 - 60:00 (минут:секунд) По умолчанию: 10 секунд Описание: УПП можно сконфигурировать на принудительную задержку между окончанием останова и началом следующего пуска. Во время ожидания очередного запуска на дисплее пульта производится обратный отсчет оставшегося до пуска времени.

ПРИМЕЧАНИЕ

Задержка перезапуска измеряется от окончания каждой операции останова. Изменения настройки задержки перезапуска вступают в силу после следующего останова.

4N - Проверка температуры двигателя

Опции: Не надо проверять (по умолчанию)

Проверить

Описание: Выбирает, будет ли УПП проверять температуру двигателя для выполнения успешного пуска. УПП проверяет расчетное значение температуры двигателя с учетом нагрева, исходя из данных предыдущего пуска. Разрешение пуска возможно лишь при условии достаточного охлаждения двигателя для совершения успешного пуска.

40 – Зарезервировано

4Р – Зарезервировано

4Q – Минимальное напряжение

Этот параметр зарезервирован для внутреннего использования.

4R – Задержка при минимальном напряжении

Этот параметр зарезервирован для внутреннего использования.

4S – Максимальное напряжение

Этот параметр зарезервирован для внутреннего использования.

4Т – Задержка при максимальном напряжении

Этот параметр зарезервирован для внутреннего использования.

5. Автосброс аварии

УПП можно запрограммировать на автоматический сброс некоторых отключений, что помогает минимизировать простои. Для автосброса отключения делятся на три категории в зависимости от опасности для УПП:

Категория	Отключение
А	Дисбаланс токов

	Потеря фазы	
	Неисправность силовой цепи	
	Частота	
Пониженный ток		
D	Мгновенная перегрузка по току	
D	Отключение по входу А	
	Отключение по входу В	
	Перегрузка двигателя (по тепловой модели)	
c	Отключение по датчикам температуры RTD/PT100	
	Термистор двигателя	
	Перегрев радиатора	

Другие отключения не допускают использование автосброса.

Эта функция идеальна для удаленных установок, использующих управление по 2-проводной цепи в удаленном режиме. Если 2-проводной сигнал пуска присутствует после автосброса, то УПП выполнит перезапуск.

5А - Настройка автосброса

Опции:	Нет автосброса (по умолчанию)	
	Сброс группы А	
	Сброс групп А и В	
	Сброс групп А, В и С	
0		

Описание: Выбирает, какие отключения могут быть сброшены автоматически.

5В - Максимальное число автосбросов

Диапазон: 1 - 5	По умолчанию: 1
Описание: Настройка числа автосбросов УПП, есл	и в нем продолжаются отключения. Счетчик авто-
сбросов увеличивается на 1 при каждом автосбро	се УПП и уменьшается на 1 после каждого успеш-
ного цикла пуска/останова.	

5С - Задержка сброса для групп А и В

Диапазон: 0:05 - 15:00 (минут:секунд)	
---------------------------------------	--

По умолчанию: 5 секунд Описание: Задает задержку между сбросом отключений группы А и группы В.

По умолчанию: 5 минут

5D - Задержка сброса для группы С

Диапазон: 5 - 60 (минут)	
--------------------------	--

Описание: Задает задержку перед сбросом отключений группы С.

6. Описание входов функций

У УПП есть два программируемых входа, которые позволяют дистанционно управлять УПП.

6А - Функция входа А

Опции: Выбор набора параметров (по умолчанию)

УПП можно сконфигурировать с двумя разными наборами данных двигателя. Для использования данных второго двигателя параметр 6А нужно настроить на "Выбор набора параметров" и надо замкнуть С53, С54 при подаче команды пуска. При пуске УПП проверяет, какой набор данных использовать, и затем использует его для всего цикла пуска/останова.

Отключ. по НР входу

Вход А можно использовать для отключения УПП. Если параметр 6А настроен в "Отключ. по НР входу", то замыкание клемм С53, С54 отключает УПП.

Отключ. по НЗ входу

Если параметр 6А настроен на "Отключ. по НЗ входу", то размыкание цепи С53, С54 отключает УПП.

Выбор местное/дистанционное

Вход А можно использовать для выбора между местным и дистанционным управлением, вместо использования кнопки L/R (местное/дистанционное) на пульте. Если вход разомкнут, то УПП работает в местном режиме, и им можно управлять с панели. Если вход замкнут, то УПП работает в режиме дистанционного управления. Кнопки START (ПУСК) и L/R отключены, и УПП будет игнорировать любую команду выбора Местный/Дистанционный по последовательному интерфейсу. Для использования входа А для выбора между местным и дистанционным управлением параметр 6Q нужно перевести в '*Mecm./Дист. всегда*' или '*Mecm/Дист при откл*.'.

Аварийный пуск

В аварийном режиме УПП продолжает работать до останова, игнорируя все отключения и предупреждения (смотрите параметр 15С, где это описано). Замыкание С53, С54 активирует аварийный режим. Размыкание этой цепи завершает аварийный режим и УПП останавливает двигатель. Запрет работы УПП можно отключить, подав сигнал на соответствующий вход управления. Разомкнутая цепь на С53, С54 отключает УПП. УПП не будет реагировать на команды пуска. При работе УПП позволит двигателю остановиться с выбегом, игнорируя режим плавного останова, настроенный в параметре 2Н.

Толчок вперед

Включает толчковый режим в направлении вперед (работает только в дистанционном режиме).

Толчок назад

Включает толчковый режим в направлении назад (работает только в дистанционном режиме).

Описание: Выбор функции входа А.

6В – Вход А: Отображение включения на дисплее

Опции:	Вход отключения (по умолчанию)	Нет потока
	Низкое давление	УПП не доступно
	Высокое давление	Регулятор
	Отказ насоса	плк
	Низкий уровень	Тревога вибрации
	Высокий уровень	

Описание: Выбор сообщения, которое будет выведено на панель при подаче сигнала на вход А.

6С – Отключение – Вход А

Опции: Всегда активен (по умолчанию)

Отключение может произойти в любой момент, когда УПП получает питание.

Только эксплуатац.

Отключение может произойти при разгоне, замедлении или работе на постоянной скорости.

Только работа

Отключение может произойти только при работе на постоянной скорости.

Описание: Выбирает, когда может произойти отключение по сигналу на входе.

6D - Задержка отключения по входу А

Диапазон: 0:00 - 4:00 (минут:секунд) По умолчанию: 0 секунда Описание: Задает задержку между активацией входа и отключением УПП.

6Е - Начальная задержка отключения по входу А

Диапазон: 00:00 - 30:00 (минут:секунд) По умолчанию: 0 секунда Описание: Задает задержку для возможности отключения по входу. Начальная задержка отсчитывается от момента приема сигнала пуска. До истечения начальной задержки состояние входа игнорируется.

6F, 6G, 6H, 6I, 6J – Отключ. вход В

Параметры 6F~6J конфигурируют работу входа В так же, как параметры 6A~6E конфигурируют вход А. Смотрите описание соответствующих параметров.

6 Функция входа В: Функция (По умолчанию: Отключ. по НР входу)

6 Вход В: Отображение включения на дисплее (По умолчанию: Вход отключения)

6Н Вход В: Отключение (По умолчанию: Всегда активен)

6І Задержка отключения по входу В. (По умолчанию: 0:00)

6Ј Начальная задержка отключения по входу В. (По умолчанию: 0:00)

6К, 6L – Входы С и D (зарезервировано)

6М – Конфигурация входа дистанционного сброса

Опции: Нормально замкнут (по умолчанию)

Нормально разомкнут

Описание: Выбирает конфигурацию входа дистанционного сброса УПП (клеммы C41, C42) - нормально разомкнутый или замкнутый.

6N – 6Р (В разработке)

6Q - Местное/Дистанционное

- Опции: Мест./Дист. всегда Переключение местное/дистанционное кнопкой L/R разрешено всегда
 - Мест/Дист при откл. Переключение местное/дистанционное кнопкой L/R разрешено при остановленном двигателе
 - Только местное управление Сигналы на входах дистанционного управления игнорируются.
 - Только дистанционное управление Кнопки местного управления START (ПУСК), RESET (СБРОС), L/R не работают.

Описание: Выбирает, когда кнопку L/R можно использовать для переключения между местным и дистанционным управлением, и разрешает или запрещает кнопки местного управления и входы дистанционного управления.

Кнопка STOP (ОСТАНОВ) на панели всегда активна.

ПРЕДУПРЕЖДЕНИЕ

Кнопка STOP (ОСТАНОВ) на панели всегда активна. При использовании дистанционного управления с двухпроводной цепью при нажатии на эту кнопку УПП выполняет перезапуск, если дистанционные входы пуска/останова и сброса по-прежнему включены.

6R - Связь - дистанционное управление

Опции: Запрет управления по последовательной связи Вкл.упр.в дист.реж. (по умолчанию)

Описание: Выбирает, будет ли пускатель принимать команды Пуск и Останов по последовательной связи при работе в режиме дистанционного управления.

Команды сброса, принудительного останова и переключения мест/дист всегда разрешены.

7. Выходы

У УПП есть три программируемых выхода, которые можно использовать для подачи сигналов о разных условиях работы на внешнее оборудование.

7А - Реле А: Функция

Опции:	Откл. – Реле А не используется
	Главный контактор (по умолчанию) – Реле замыкается, когда УПП получает команду пус-
	ка, и остается замкнутым, пока на двигатель подается питание.
	Работа — Реле замыкается, когда пускатель переходит в состояние работы на постоянной скорости.
	Отключение – Реле замыкается при отключении по аварии (см. параметры 16А – 16Х).
	Предупреждение – Реле замыкается при предупреждении (см. параметры 16А – 16Х).
	Сигнал пониженного тока – Реле замыкается при предупреждении о пониженном токе двигателя (см. параметр 7М).
	Сигнал повышенного тока – Реле замыкается при предупреждении о повышенном токе двигателя (см. параметр 7N).
	Перегрев двигателя – Реле замыкается при перегреве двигателя (см. параметр 70)
	Отключение по входу А – Реле замыкается при поступлении на вход А сигнала на отклю- чение.
	Отключение по входу В – Реле замыкается при поступлении на вход В сигнала на отклю- чение.
	Перегрузка двигателя — Реле замыкается, когда пускатель выполняет отключение по перегрузке двигателя.
	Дисбаланс тока – Реле замыкается, когда пускатель выполняет отключение по дисбалан- су тока.
	Минимальный ток — Реле замыкается, когда пускатель выполняет отключение по мини- мальному току.

- Мгновенный максимальный ток Реле замыкается, когда пускатель выполняет отключение по мгновенному максимальному току.
- Частота Реле замыкается, когда пускатель выполняет отключение по отклонению частоты.
- КЗ на землю Реле замыкается, когда пускатель выполняет отключение по току замыкания на землю.
- Перегрев радиатора Реле замыкается, когда пускатель выполняет отключение по перегреву радиатора.
- Потеря фазы Реле замыкается, когда пускатель выполняет отключение по потере фазы.
- Термистор двигателя Реле замыкается, когда пускатель выполняет отключение по сигналу от термистора двигателя.
- Переключающий контактор Реле замыкается, когда при высоком сопротивлении ротора достигнуто полное напряжение, что позволяет использовать двигатель с фазным ротором.

Мин.напряжение – Зарезервировано.

Готов – Реле замыкается, когда УПП находится в состоянии готовности.

Описание: Выбор функции реле А (нормально разомкнуто).

7В - Реле А: задержка замыкания

7C -

7D~7

Диапазон: 0:00 - 5:00 (минут:секунд)	По умолчанию: 0 секунд
Описание: Настройка задержки замыкания реле А.	
Реле А: задержка размыкания	
Диапазон: 0:00 - 5:00 (минут:секунд)	По умолчанию: 0 секунд
Описание: Настройка задержки размыкания реле А.	
7L – Релейные выходы В, С	
Параметры 70~7І конфигурируют работу реле В, С та	ак же, как параметры 7А~7С конфигурируют ре
ле А. См. настройки Реле А.	
Реле В - это реле с перекидным контактом.	
• 7D Реле В: Функция	По умолчанию: Работа
• 7Е Реле В: задержка замыкания	
• 7 ГРеле В: задержка размыкания	
Реле С - это реле с перекидным контактом.	
• 7G Реле С: Функция реле	По умолчанию: Отключение
• 7Н Реле С: задержка замыкания	
• 71 Реле С: задержка размыкания	
··· ·	

7М - Сигнал о пониженном токе

УПП отслеживает уровни пониженного и повышенного тока для заблаговременного предупреждения о ненормальной работе оборудования. Эти сигналы можно настроить так, чтобы они во время эксплуатации указывали на ненормальный уровень тока — между нормальным рабочим уровнем и уровнями защитного отключения (минимальный ток и мгновенная перегрузка по току). Сигналы о пониженном и повышенном токе можно через программируемые выходы передать на внешнее оборудование.

Сигналы сбрасываются, когда ток возвращается в область нормальной работы более чем на 10% от запрограммированного значения тока.

Диапазон: 1% - 100% от номинального тока

Описание: Настраивает уровень, при котором появляется сигнал низкого тока, в процентах от тока полной нагрузки двигателя.

7N - Сигнал о повышенном токе

Диапазон: 50% - 600% от номинального тока

По умолчанию: 100%

По умолчанию: 50%

Описание: Настраивает уровень, при котором появляется сигнал высокого тока, в процентах от номинального тока двигателя.

70 - Сигнал температуры двигателя

В УПП есть сигнал температуры двигателя для заблаговременного предупреждения о нештатной работе. Сигнал может указывать, что двигатель работает при температуре выше нормальной, но

ниже предела перегрева. Сигнал можно вывести на внешнее оборудование с помощью одного из программируемых выходов. Диапазон: 0% - 160% По умолчанию: 80%

Описание: Настраивает уровень, при котором появляется сигнал перегрева двигателя, в процентах от максимальной температуры двигателя.

7Р - Аналоговый выход А

Опции: Ток (%) (по умолчанию) – Ток в процентах от номинального тока двигателя.

Двиг: Темпер.(%) – Температура двигателя в % от макс. допустимой температуры двигателя. Двиг: кВт (%) – Измеренная мощность двигателя в % от максимальной мощности в кВт.

Двиг: кВА (%) – Измеренная полная мощность двигателя, в % от макс. мощности в кВА.

Двиг.: cos фи – Коэффициент мощности двигателя, измеренный УПП.

Измеренная мощность двигателя в кВт: √3 х средний ток х номинальное напряжение сети х измеренный коэффициент мощности

Максимальная мощность двигателя в кВт: √3 х номинальный ток х номинальное напряжение сети. Коэффициент мощности pf принят равным 1.

Измеренная полная мощность двигателя в кВА: √3 х средний ток х номинальное напряжение сети

Максимальная реактивная мощность двигателя кВА: $\sqrt{3}$ х номинальный ток х номинальное напряжение сети

Описание: Выбор информации, выводимой на аналоговый выход.

7Q - Аналоговый выход А: шкала

Диапазон: 0-20 мА

4-20 мА (по умолчанию)

Описание: Выбор диапазона для аналогового выхода.

7Q - Максимум аналогового выхода А

Диапазон: 0% - 600%

По умолчанию: 100%

Описание: Калибровка верхнего предела аналогового выхода согласно измеряемому сигналу внешнего измерительного прибора.

75 - Минимум аналогового выхода А

Диапазон: 0% - 600%

По умолчанию: 0%

Описание: Калибровка нижнего предела аналогового выхода согласно измеряемому сигналу внешнего измерительного прибора.

7T, 7U, 7V, 7W – Аналоговый выход В (в разработке)

8. Дисплей

Эти параметры позволяют сконфигурировать панель согласно конкретным потребностям пользователя.

8А — Язык

Опции:	English (по умолчанию)
	Português
	Chinese
	Français
	Español
	Italiano
	Deutsch
	Русский
0	

Описание: Задает, на каком языке панель показывает сообщения и подсказки.

8B, 8C – Копка F1 и F2: Действие

Опции: Нет

Настр. автозап./ост. Толчок

Описание: Устанавливает функции кнопок F1 и F2 на пульте.

ПРИМЕЧАНИЕ

Для использования кнопок F1 и F2 не нужен код доступа. Пользователи могут использовать эти

функции независимо от настройки параметра 15В Блокировка настройки.

8D - Отображение А или кВт

Опции: Ток (по умолчанию)

Мощность

Описание: Выбор отображения в главном окне тока (амперы) или мощности двигателя (кВт).

8E, 8F, 8G, 8H – Программируемый пользователем экран

- Опции: Пусто В выбранную зону не выводится никаких данных, что позволяет просматривать длинные сообщения без "перекрытия".
 - Состояние пускателя (по умолчанию) Рабочее состояние пускателя (пуск, работа, останов или отключение). Доступно только для верхнего левого и нижнего левого положений на экране.

Двигатель: Ток – Средний ток, измеренный по трем фазам.

Двиг.: cos фи – Измеренный коэффициент мощности двигателя.

Частота сети – Средняя частота, измеренная по трем фазам.

Двигатель: кВт – Рабочая мощность двигателя в кВт.

Двигатель: л.с. – Рабочая мощность двигателя в лошадиных силах.

Температура двигателя – Температура двигателя, вычисленная по тепловой модели.

кВтч – Энергия в кВтч, полученная двигателем через УПП.

Наработка в часах – Число часов, когда двигатель работал от УПП.

Аналоговый вход – В разработке.

Напряжение сети – Средний по трем фазам уровень напряжения в питающей сети

Описание: Выбирает, какая информация будет отображаться на программируемом экране дисплея.

- 8Е Экран сверху слева По умолчанию: Состояние пускателя
 - 8F Экран сверху справа По умолчанию: Пусто
 - 8G Экран снизу слева По умолчанию: Наработка в часах
 - 8Н Экран снизу справа По умолчанию: Пусто

8I - Выбор индикации в виде графиков

УПП может в реальном времени строить график рабочих параметров.

Опции: Ток (%) (по умолчанию) – Ток в процентах от номинального тока двигателя.

- Двиг: Темпер.(%) Температура двигателя в процентах от максимально допустимой температуры двигателя.
- Двиг: кВт (%) Измеренная мощность двигателя, в процентах от максимальной мощности в кВт.
- Двиг: кВА (%) Измеренная реактивная мощность двигателя, в процентах от максимальной мощности в кВА.

Двиг.: cos фи – Измеренный коэффициент мощности двигателя.

Измеренная мощность двигателя в кВт: √3 х средний ток х номинальное напряжение сети х измеренный коэффициент мощности

Максимальная мощность двигателя в кВт: √3 х номинальный ток х номинальное напряжение сети. Коэффициент мощности pf принят равным 1.

Измеренная полная мощность двигателя в кВА: √3 х средний ток х номинальное напряжение сети

Максимальная реактивная мощность двигателя кВА: √3 х номинальный ток х номинальное напряжение сети

Описание: Выбор информации, отображаемой на графиках.

8J – Время графика

Опции: 10 секунд (по умолчанию) 30 секунд 1 минута 5 минут 10 минут 30 минут 1 час

Описание: Задает период времени графика. График будет последовательно заменять старые данные новыми.

8К - Максимум графика

Диапазон: 0%— 600% По умолчанию: 400% Описание: Настраивает верхний предел графика рабочих параметров.

8L - Минимум графика

Диапазон: 0% — 600% По умолчанию: 0%

Описание: Настраивает нижний предел графика рабочих параметров.

8М - Калибровка тока

Диапазон: 85% - 115%

По умолчанию: 100%

Описание: Калибровка цепей измерения тока для соответствия показаниям внешнего измерительного прибора.

Настройку выполните по следующей формуле:

Калибровка (%) = Ток, показанный на дисплее / Ток, измеренный внешним прибором например, 102% = 66А / 65А

ПРИМЕЧАНИЕ

Эта регулировка влияет на все функции и защиты на основе тока.

8N - Номинальное напряжение сети

Диапазон: 100 – 690 В По умолчанию: 400 В Описание: Настройка номинального сетевого напряжения для функций индикации панели. Значение используется для расчета активной и реактивной (кВА) мощностей двигателя, но не влияет на управление или защиту двигателя.

9. Данные двигателя 2

УПП может поддерживать два разных набора параметров для пуска и останова двигателя.

- При работе УПП с двумя двигателями (например, в конфигурации основной-резервный) используйте параметр 9А для выбора двойной тепловой модели и настройте параметры 9В~9Е для второго двигателя.
- При работе УПП с двумя разными наборами параметров для одного двигателя (для двухскоростных двигателей или установок с разными режимами пуска) используйте параметр 9А для выбора одной тепловой модели и настройте нужные профили пуска и останова в параметрах 10А~10G. УПП будет игнорировать параметры 9В~9Е и будет использовать настройки для основного двигателя.

Для выбора второго набора параметров двигателя программируемый вход следует сконфигурировать на выбор набора параметров (параметры 6А и 6F), и вход должен быть активным в момент пуска.

ПРИМЕЧАНИЕ

Вы можете выбрать используемый набор параметров только когда УПП остановлен.

9А - Двойная тепловая модель

Опции: Одинарная (по умолчанию)

Двойная

Описание: Активирует режим двух тепловых моделей. Двойная тепловая модель нужна, только если УПП управляет двумя физически разными двигателями.

9В – Номинальный ток двигателя 2

Диапазон: Зависит от модели

Описание: Задает номинальный ток второго двигателя.

9С - Время блокировки ротора 2

Диапазон: 0:01 - 2:00 (минут:секунд) По умолчанию: 10 секунд Описание: Настраивает максимальное время, когда двигатель из холодного состояния может получать ток заторможенного ротора до перегрева. Настройте согласно паспорту двигателя.

9D - Ток блокированного ротора 2

Диапазон: 400% - 1200% от номинального тока двигателя По умолчанию: 600% Описание: Задает ток заблокированного ротора подключенного двигателя в процентах от номинального тока. Настройте согласно паспорту двигателя. Диапазон: 100% - 130%

По умолчанию: 105%

Описание: Настраивает сервис-фактор двигателя, используемый в тепловой модели. Если двигатель работает при токе полной нагрузки, то он достигает 100%. Настройте согласно паспорту двигателя.

10. Режим пуска/останова 2

10А — Режим пуска 2

Опции: Неизмен. ток (по умолчанию) Адаптивное управление Описание: Выбирает режим плавного пуска.

10В - Время разгона 2

Диапазон: 1 - 180 (секунд) По умолчанию: 10 секунд Описание: Задает полное время разгона для пуска с адаптивным управлением или время разгона для пуска с нарастанием тока (от начального тока до предела тока).

10С - Начальный ток 2

Диапазон: 100% - 600% от номинального тока По умолчанию: 350% Описание: Задает уровень начального пускового тока для пуска с нарастанием тока в процентах от номинального тока двигателя. Настройте так, чтобы двигатель начал ускоряться сразу же после активации пуска. Если пуск с нарастанием тока не нужен, настройте начальный ток равным пределу тока.

10D – Предел тока 2

Диапазон: 100% - 600% от номинального тока По умолчанию: 350% Описание: Настраивает предел тока для режимов плавного пуска с ограничением тока и нарастанием тока в процентах от номинального тока двигателя.

10Е - Адаптивный профиль пуска 2

Опции: Раннее ускорение

Постоянное ускорение (по умолчанию)

Позднее ускорение

Описание: Выбирает, какой профиль УПП будет использовать для плавного пуска с адаптивным управлением.

10 - Время толчкового пуска 2

Диапазон: 0 – 2000 миллисекунд По умолчанию: 0000 миллисекунд Описание: Задает длительность толчкового пуска. Значение 0 запрещает толчковый пуск.

10G - Ток толчкового пуска 2

Диапазон: 100% - 700% от номинального Описание: Задает уровень тока толчкового пуска.

10Н – Режим останова 2

Опции: Останов выбегом (по умолчанию) Плавное снижение напряжения Адаптивное управление Тормоз

Описание: Выбирает режим останова.

10І – Время останова 2

Диапазон: 0:00 - 4:00 (минут:секунд)

По умолчанию: 0 секунд

По умолчанию: 500%

Описание: Задает время для плавного останова двигателя с помощью плавного снижения напряжения или адаптивного управления. Настраивает полное время останова при использовании торможения.

Если установлен главный контактор, то он должен оставаться замкнутым до окончания времени останова. Используйте одно из программируемых реле для управления главным контактором.

10Ј - Адаптивный профиль останова 2

Опции: Раннее замедление Постоянное замедление (по умолчанию) Позднее замедление Описание: Выбирает, какой профиль УПП будет использовать для плавного останова с адаптивным управлением.

10К - Коэффициент адаптивного управления 2

Диапазон: 1% - 200% По умолчанию: 75% Описание: Регулирует качество работы адаптивного управления. Эта настройка влияет на управление как пуском, так и остановом.

10L - Тормозной момент 2

Диапазон: 20% - 100% По умолчанию: 20% Описание: Настраивает величину тормозного момента, который УПП использует для замедления двигателя.

10М - Время торможения 2

Диапазон: 1 - 30 (секунд) По умолчанию: 1 секунда Описание: Задает длительность торможения постоянным током во время останова.

11. Температура RTD

На УПП есть вход RTD/PT100. По сигналу на этом входе УПП может отключить двигатель, когда температура превысит назначенную уставку.

11А Откл. темп. RTD А

Диапазон: 0 - 250 ° С

Описание: Настраивает уставку отключения для входа RTD/PT100.

11В – 11G Зарезервировано

12. Двигатель с фазным ротором

Эти параметры позволяют настроить УПП на работу с двигателем с фазным ротором.

12А, 12В – Время разгона 1 и 2

Опции: Одно время (по умолчанию)

Два времени

Описание: Выбирает использование одного или двух участков разгона / замедления. Для асинхронных двигателей с короткозамкнутым ротором используйте одно время, для асинхронных двигателей с фазным ротором (с контактными кольцами – два времени).

Параметр 12А выбирает конфигурацию для первого двигателя, а параметр 12В – для второго.

12С - Время переключения

Диапазон: 100 - 500 (миллисекунд) По умолчанию: 150 миллисекунд Описание: Настройка задержки между замыканием контактора шунтирования резисторов в цепи ротора и началом второго этапа разгона. Настройте время так, чтобы у контактора был запас времени для замыкания, но двигатель не начал замедляться.

Параметр 12С применяется только если в параметре 12А или 12В установлено значение "*две рам-пы*", и выходное реле настроено на "*Переключающий контактор*".

12D – Торм. коллектора

Диапазон: 10% - 90%

По умолчанию: 50%

По умолчанию: 50 ° С

Описание: Задает уровень проводимости при замыкании резистора ротора в % от полной проводимости. Настройте так, чтобы не было импульса тока, но двигатель сохранил достаточно скорости для правильного пуска.

15. Специальные параметры

15А - Код доступа

Диапазон: 0000 - 9999

По умолчанию: 0000

Описание: Настройка кода доступа для доступа к ограниченным разделам меню. С помощью кнопок ◀ и ▶ выберите изменяемую цифру и измените ее значение с помощью кнопок ▲ и ▼.

ПРИМЕЧАНИЕ

В случае утери кода доступа обращайтесь к вашему поставщику за главным кодом доступа, который позволит вам запрограммировать новый код доступа.

15В – Блокировка настроек

Опции: Чтение/запись (по умолчанию) — Позволяет пользователям изменять значения параметров в меню программирования.

Только чтение – Запрещает пользователям изменять значения параметров в меню программирования. Просмотр значений параметров разрешен.

Описание: Задает, можно ли с панели изменять параметры в меню программирования.

ПРИМЕЧАНИЕ

Изменения значения параметра Блокировка настроек вступают в силу только после закрытия меню программирования.

15С - Аварийный пуск

Опции: Запрет (по умолчанию)

Разрешение

Описание: Выбор в УПП разрешения работы в аварийном режиме. В аварийном режиме УПП запускает двигатель (если он еще не работает) и продолжает работать до завершения аварийного режима, игнорируя команды останова и отключения.

Аварийный режим включается с программируемого входа.

внимание

Не рекомендуется длительно использовать аварийный режим работы. Режим аварийной работы может снизить ресурс УПП, так как все защиты и отключения запрещены. Эксплуатация УПП в аварийном режиме отменяет гарантию на изделие.

15D - Работа с короткозамкнутым тиристором

Опции: Только 3-фазн.упр. (по умолчанию)

Разрешено 2-фазн.упр.

Описание: Выберите, разрешит ли УПП работу в двухфазном режиме, если возникли неполадки в одной фазе УПП. Для ответственных систем и непрерывных процессов УПП может продолжить работу с управлением двигателем по двум фазам. Переход в двухфазный режим возможен после остановки двигателя с ошибкой Lx-Tx short circuit и последующего сброса.

внимание

В двухфазном режиме используется технология 2-фазного плавного пуска, и необходимо уделить особое внимание выбору номиналов автоматических выключателей и защиты. внимание

Если УПП подключено внутри треугольника, то двухфазный режим не работает.

При отключении питания цепей управления при последующем включении и пуске вновь появится ошибка Lx-Tx short circuit, и переход в 2-фазный режим необходимо повторить.

15Е – Момент в толчковом режим

УПП может запускать двигатель на пониженной скорости, что позволяет точно позиционировать рабочий орган. Толчки можно подавать в направлении вперед или назад. Диапазон: 20% - 100%

По умолчанию: 50%

Описание: Настройка предела тока для толчкового режима.

16. Функции защит

Эти параметры определяют, как УПП будет реагировать на разные действия защит. При необходимости УПП может отключиться, подать предупреждение, либо игнорировать различные проблемы. Все события защиты записываются в журнал событий. Действием по умолчанию для всех защит является отключение УПП.

внимание

Отключение защит может представлять риск для пускателя и двигателя, это можно делать только в чрезвычайных ситуациях.

16А~16Х – Операции защиты

Опции: Отключ. пускателя (по умолчанию) Предупр. и журнал Только журнал

Описание: Выбирает действие УПП для каждой функции защиты.

16А Перегрузка двигателя

- 16В Максимальное время пуска
- 16С Минимальный ток
- 16D Мгновенный максимальный ток
- 16Е Дисбаланс тока
- 16F Частота
- 16G Вход отключения А
- 16Н Вход отключения В
- 16 Термистор двигателя
- 16Ј Таймаут связи
- 16К Отключение по связи с сетью
- 16L Перегрев радиатора
- 16М Батарея/часы
- 160 Перегрев RTD / РТ100
- 16V Минимальное напряжение
- 16W Максимальное напряжение
- 16Х Низкое напряжение цепей управления

10. Примеры применений

Нижеперечисленные примеры применений помогут понять принципы подключения и параметрирования УПП при определенных условиях. Примеры описывают различные применения, включая торможение, толчковый режим, работу с насосами и опции усиленных защит.

10.1. Установка с сетевым контактором

УПП установлен с сетевым контактором (категория AC3). Напряжение управления должно подаваться с входной стороны контактора.

Главный контактор управляется выходом УПП "*Главный контактор*", который по умолчанию назначен на выходное реле A (клеммы 13, 14).

1	Напряжение управления
2	Входы внешнего управления
3	Вход термистора двигателя
4	Вход RTD / PT100
5	Выход +24В
6	Релейные выходы
7	Аналоговый выход
8	Трехфазное питание
9	Клеммы двигателя
KM1	Главный контактор
F1	Полупроводниковые предохра-
	нители (опционально)
S1	Контакт пуска/останова
S2	Контакт сброса
13, 14	Релейный выход А
23, 24	Релейный выход "Работа"
31, 32, 34	Релейный выход В
41, 42, 44	Релейный выход С

Настройки параметров:

Параметр 7А Реле А: Функция

• Выберите 'Главный контактор' - назначает функцию главного контактора релейному выходу А (по умолчанию).

10.2. Установка с внешним шунтирующим контактором

УПП установлен с внешним шунтирующим контактором (категория AC1). Шунтирующий контактор управляется выходом УПП (клеммы 13, 14).

1	Напряжение управления
2	Входы внешнего управления
3	Вход термистора двигателя
4	Вход RTD / PT100
5	Выход +24В
6	Релейные выходы
7	Аналоговый выход
8	Трехфазное питание
9	Клеммы двигателя
KM1	Главный контактор
F1	Полупроводниковые предохра-
	нители (опционально)
S1	Контакт пуска/останова
S2	Контакт останова
S3	Контакт сброса
13, 14	Релейный выход А
23, 24	Релейный выход "Работа"
31, 32, 34	Релейный выход В
41, 42, 44	Релейный выход С

Настройки параметров:

Специальных настроек не требуется

10.3. Работа в аварийном режиме

УПП установлен с внешним шунтирующим контактором (категория AC1). Шунтирующий контактор управляется выходом УПП (клеммы 13, 14).

ПРИМЕЧАНИЕ

Хотя аварийная работа удовлетворяет функциональным требованиям режима пожара, AuCom не рекомендует использовать ее в ситуациях, в которых нужно провести испытания и (или) обеспечить совместимость с конкретными стандартами, для которых нет сертификации.

внимание

Не рекомендуется длительно использовать аварийный режим работы. Режим аварийной работы может снизить ресурс УПП, так как все защиты и отключения запрещены. Эксплуатация УПП в аварийном режиме отменяет гарантию на изделие.

1	Напряжение управления			
2	Входы внешнего управления			
3	Вход термистора двигателя			
4	Вход RTD / PT100			
5	Выход +24В			
6	Релейные выходы			
7	Аналоговый выход			
8	Трехфазное питание			
9	Клеммы двигателя			
S1	Контакт пуска/останова			
S2	Контакт останова			
S3	Контакт сброса			
E1	Полупроводниковые предохра-			
11	нители (опционально)			
13, 14	Релейный выход А			
23, 24	Релейный выход "Работа"			
31, 32, 34	Релейный выход В			
41, 42, 44	Релейный выход С			

Настройки параметров:

• Параметр 6А Функция входа А

Выбор 'Аварийный пуск' - назначает входу А функцию включения аварийного режима.

• Параметр 15С Аварийный режим

Выбор 'Разрешение' - разрешает работу аварийного режима

10.4. Вспомогательная цепь отключения

В штатном режиме работы УПП управляется дистанционным сигналом по 2-проводной цепи (клеммы C31, C32).

Вход А (клеммы C53, C54) подключен к цепи внешнего отключения (например, к реле низкого давления для насосной системы). При активации внешней цепи УПП останавливает двигатель.

1 Напряжение управления					
2	Входы внешнего управления				
3	Вход термистора двигателя				
4	Вход RTD / РТ100				
5	Выход +24В				
6	Релейные выходы				
7	Аналоговый выход				
8	Трехфазное питание				
9	Клеммы двигателя				
S1	Контакт пуска/останова				
S2	Контакт останова				
S3	Контакт сброса				
F1	Полупроводниковые предохра-				
	нители (опционально)				
13, 14	Релейный выход А				
23, 24	Релейный выход "Работа"				
31, 32, 34	Релейный выход В				
41, 42, 44	Релейный выход С				

Настройки параметров:

- Параметр 6А Функция входа А
 Выбор 'Отключ. по НР входу'. Назначает входу А
 функцию вспомогательного отключения (Н/Р).
- Параметр 6В Сообщение входа А
 Выберите имя, например, Низкое давление. Назначьте имя входу А.
- Параметр 6С Вход А отключения
 Настройте согласно вашим требованиям. Например,
 'Только работа' разрешает работу входа отключения
 только во время работы УПП.
- Параметр 6D Задержка отключения по входу А Настройте согласно вашим требованиям. Установите задержку между включением входа и отключением УПП.
- Параметр 6Е Начальная задержка отключения по входу А

Настройте примерно на 120 секунд. Блокирует срабатывание входа аварийного отключения на 120 секунд после сигнала пуска. Это позволяет повысить давление в трубопроводе и временно не реагировать на сигнал о низком давлении.

10.5. Торможение постоянным током с внешним датчиком нулевой скорости

В случае нагрузок, которые могут изменяться между циклами торможения, предпочтительна установка внешнего датчика нулевой скорости для отключения торможения при полной остановке двигателя. Этот метод управления обеспечивает отключение торможения после остановки двигателя, что устраняет ненужный нагрев двигателя.

На следующей схеме показано, как можно использовать датчик нулевой скорости для отключения торможения постоянным током при полной остановке двигателя. Датчик нулевой скорости (A2) часто называют детектором малой скорости. Его внутренний контакт разомкнут при нулевой скорости и замкнут при любой скорости, большей нулевой. После остановки двигателя C53, C54 размыкается и УПП будет отключено. После подачи следующей команды пуска (то есть следующего включения K10) C53, C54 замыкается, и УПП может работать.

УПП должен работать в режиме внешнего управления, и параметр 6А *Функция входа* A должен быть настроен на 'Запрет работы УПП'.

внимание

Если тормозной момент установлен слишком большим, то двигатель остановится раньше окончания времени торможения, что может повредить двигатель.

Установка высокого тормозного момента приводит к тому, что пиковый ток начинает течь сразу после команды останова. Убедитесь, что установленные предохранители могут выдержать этот ток.

внимание

Работа с торможением постоянным током приводит к большему нагреву двигателя, чем в расчете по тепловой модели. Если вы применяете торможение постоянным током, то установите термистор двигателя или задайте необходимую величину задержки повторного запуска (параметр 4M).

1	Питание цепей управления	
C23, C24	Пуск	
C31, C32	Стоп]
C41, C42	Сброс]
C53, C54	Программируемый вход А (Запрет работы УПП)]
2	Подключение двигателя	
3	Трехфазное питание]
4	Запрет работы УПП]

Α	Откл. (Готов)
В	Пуск
С	Работа
D	Останов
Е	Нулевая скорость
5	Сигнал пуска
6	Датчик нулевой скорости

Параметры конфигурирования торможения постоянным током смотрите в главе Торможение постоянным током.

внимание

При использовании торможения постоянным током силовое питание должно быть подсоединено к УПП (входные клеммы L1, L2, L3) в прямой последовательности фаз, и параметр 4G Чередование фаз должен быть настроен на Только прямая.

внимание

Если задан слишком высокий тормозной момент, то двигатель остановится до окончания времени торможения, после чего будет без нужды подвергаться нагреву, что может привести к его повреждению. Для обеспечения безопасной работы пускателя и двигателя нужно тщательно сконфигурировать параметры.

Высокий момент торможения может привести к потреблению пикового тока при останове двигателя вплоть до токов прямого пуска от сети. Убедитесь, что в цепи питания двигателя установлены предохранители защиты нужной величины.

10.6. Плавное торможение

Для установок с очень большим моментом инерции и (или) переменной нагрузкой УПП можно сконфигурировать для плавного торможения.

В этой установке УПП подключен с контактором хода вперед и тормозным контактором. Когда УПП получает сигнал пуска (кнопка S1), он замыкает контактор хода вперед (КМ1) и управляет двигателем согласно запрограммированным настройкам первого двигателя.

Когда УПП получает сигнал останова (кнопка S2), он размыкает контактор хода вперед (КМ1) и замыкает тормозной контактор (КМ2) после задержки примерно 2-3 секунды (kt1). КАЗ также замыкается для активации настроек второго двигателя, которые пользователь должен запрограммировать на нужные характеристики останова.

Когда скорость двигателя приближается к нулю, датчик нулевой скорости (А2) останавливает УПП и размыкает тормозной контактор (КМ2).

1	Напряжение управления (зависит от модели)	KA3	Тормозное реле
2	Входы дистанционного управления	KA4	Реле датчика нулевой скорости
3	Вход термистора двигателя	KM1	Сетевой контактор (работа)
4	Вход RTD/PT100	KM2	Сетевой контактор (торможение)
5	Релейные выходы	KT1	Таймер задержки работы
6	Трехфазное питание	KT2	Таймер задержки торможения
7	Клеммы двигателя	KT3	Таймер задержки датчика нулевой
			скорости*
A2	Датчик нулевой скорости	S1	Контакт пуска
F1	Полупроводниковые предохранители (опция)	S2	Контакт останова
KA1	Запустить реле	S3	Контакт сброса
KA2	Реле пуска		

* Таймер КТЗ нужен, только если датчик нулевой скорости такого типа, что он выполняет тест самопроверки при включении питания и кратковременно замыкает выходное реле.

Настройки параметров:

- Параметр 6А Функция входа А (клеммы С53, С54)
- Выбор 'Выбор набора параметров' назначает вход А для выбора набора параметров двигателя.
- Настройте пусковые характеристики с помощью набора основного двигателя.
- Настройте тормозные характеристики с помощью набора второго двигателя.
- Параметр 7G Функция реле С: Выбор 'Отключение' назначает функцию отключения релейному выходу С.

ПРИМЕЧАНИЕ

Если УПП отключается по частоте сети (параметр 16F Частота) при размыкании контактора KM2, то измените настройки защиты по частоте.

10.7. Двухскоростной двигатель

УПП можно сконфигурировать для управления двухскоростными двигателями типа Dahlander, используя контактор высокой скорости (КМ1), контактор низкой скорости (КМ2) и контактор звезды (КМ3).

ПРИМЕЧАНИЕ

В двигателях с коммутацией полюсов (РАМ) скорость изменяется за счет фактического изменения частоты статора с помощью конфигурации внешней обмотки. УПП непригодны для работы с таким двихскоростного двигателя

типом двухскоростного двигателя.

Когда УПП получает сигнал пуска высокой скорости, он замыкает контактор высокой скорости (КМ1) и контактор звезды (КМ3), затем управляет двигателем согласно настройкам основного двигателя.

Когда УПП получает сигнал пуска низкой скорости, он замыкает контактор низкой скорости (КМ2). Это замыкает вход А и УПП управляет двигателем согласно настройкам второго двигателя.

	-
1	Управляющее напряжение
2	Входы дистанционного управления
3	Вход термистора двигателя
4	Вход RTD/PT100
5	Релейные выходы
6	Трехфазное питание
7	Клеммы двигателя
8	Дистанционный вход пуска с низкой
	скоростью
9	Дистанционный вход пуска с высо-
	кой скоростью
F1	Полупроводниковые предохрани-
	тели (опция)
KA1	Реле дистанционного пуска (низкая
	скорость)
KA2	Реле дистанционного пуска (высо-
	кая скорость)
KM1	Сетевой контактор (высокая ско-
	рость)
KM2	Сетевой контактор (низкая ско-
	рость)
KM3	Контактор звезды (высокая ско-
	рость)
S1	Контакт сброса
41, 42, 44	Релейный выход С

8 KA1 9

ПРИМЕЧАНИЕ

Контакторы КМ2 и КМ3 должны быть механически заблокированы

Настройки параметров:

• Параметр 6А Функция входа А (клеммы С53, С54)

Выбор 'Выбор набора параметров' - назначает вход А для выбора набора параметров двигателя. Настройте рабочие характеристики высокой скорости с помощью набора параметров основного двигателя. Настройте рабочие характеристики низкой скорости с помощью набора настроек второго двигателя.

Параметр 7G Функция реле С
 Выбор 'Отключение' - назначает функцию отключения релейному выходу С

ПРИМЕЧАНИЕ

Если УПП отключается по частоте сети (параметр 16F *Частота*) при снятии сигнала пуска высокой скорости (9), то измените настройки защиты по частоте.

10.8. Двигатель с контактными кольцами

УПП можно использовать для управления двигателем с контактными кольцами с помощью резистора ротора.

Пусконаладка

1. Сконфигурируйте УПП следующим образом:

Настройки параметров

- Параметр 7D Реле В: Функция
 Выберите 'Переключающий контактор'
- Параметр 7Е Реле В: задержка замыкания Настройте это на максимальное время (5 м:00 с).
- Параметр 12А Рампа скорости 1 Выберите 'Две рампы' (для управления асинхронным двигателем с контактными кольцами)
- Параметр 12С Время переключения
 Настройка по умолчанию равна 150 миллисекунд. Настройте ее на величину чуть больше времени замыкания полюса переключающего контактора (К1).
- Параметр 12D Торможение коллектора Настройка по умолчанию равна 50%. Настройте этот параметр в значение, достаточно большое для мгновенного ускорения после закорачивания резистора ротора (R1) и достаточно низкое для устранения импульса тока.

2. Запустите двигатель в условиях штатной нагрузки и запишите время, нужное для достижения постоянной частоты вращения с внешним резистором ротора (R1) в цепи.

Остановите двигатель вскоре после выхода двигателя на постоянную скорость. Замените параметр 7Е на записанное значение времени.

3. Запустите двигатель в условиях штатной нагрузки и отслеживайте поведение частоты вращения и тока двигателя, когда переключающий контактор (К1) включает закоротку резистора ротора (R1). Если двигатель не начинает ускоряться сразу после переключения, увеличьте значение параметра 12D. Если сразу после переключения имеется импульс в токе двигателя, уменьшите значение параметра 12D.

1	R1 Постоянная скорость	5	Параметр 7Е Реле В: задержка замыкания
2	Первая рампа	6	КМ1 замкнут
3	Вторая рампа	7	Параметр 12С Время переключения
4	Режим работы (I < 120% номинального тока двига-		
	теля)		

ПРИМЕЧАНИЕ

Чтобы эта установка работала правильно, используйте только настройки первого двигателя с методом пуска с неизменным током (параметр 2А Режим пуска).

11. Поиск и устранение неисправностей

11.1. Реакция на аварийные ситуации

При срабатывании защиты УПП записывает это в журнал событий, а также может выполнить отключение или подать предупреждение. Реакция УПП зависит от настроек Действие защиты Операции защиты (группа параметров 16).

Некоторые действия защиты не могут быть настроены пользователем. Эти отключения обычно вызываются внешними событиями (например, потеря фазы) или отказом внутри УПП. Для таких отключений нет параметров и их нельзя настроить в разделе Предупреждение или Журнал.

При отключении УПП нужно определить и устранить причину отключения и затем выполнить сброс УПП перед его перезапуском. Для сброса отключения УПП нажмите кнопку RESET (СБРОС) на панели или подайте сигнал на вход дистанционного сброса.

Если УПП подал предупреждение, то УПП выполнит самосброс, когда причина предупреждения будет устранена.

11.2. Сообщения отключения

В этой таблице перечислены функции защиты устройства плавного пуска и возможные причины отключения. Некоторые из них можно отрегулировать с помощью группы параметров 4 Защита настроек и группа параметров 16 Операции защиты, другие настройки являются встроенными системными защитами и их нельзя установить или отрегулировать.

Индикация Возможная причина/Предлагаемое решение	
Отключение анало- гового входа	Определите и устраните причину, по которой происходит активация аналогово- го входа А.
	Связанные параметры: 6N, 6O, 6P
Ожидание данных	Панель не получает данные от платы управления. Проверьте подключение ка- беля и установку дисплея на УПП
Батарея/Часы	Обнаружена ошибка работы часов реального времени, либо низкое напряже- ние резервной батареи. Если батарея разряжена и питание отключено, то будут потеряны настройки даты/времени. УПП будет продолжать правильно выпол- нять операции плавного пуска и плавного останова. Заново запрограммируйте дату и время. Связанные параметры: 16М
Регулятор	Это имя, выбранное для программируемого входа. Смотрите Отключение по входу А.
Дисбаланс тока	 Отключение по дисбалансу тока может быть вызвано проблемами в двигателе, в окружающей среде или в установке, например: Дисбаланс в подаваемом напряжении питания Проблема с обмотками двигателя Слабая нагрузка двигателя Отсутствие фазы на входных клеммах L1, L2 или L3 в режиме работы Отказ тиристора с обрывом в цепи. Отказ тиристора можно однозначно диа- гностировать только заменой тиристора и проверкой работоспособности пускателя. Связанные параметры: 4H, 4I, 16E
Ошибка считывания тока LX	Где 'Х' равен 1, 2 или 3. Внутренний отказ (отказ печатной платы). Выход с цепи СТ недостаточно бли- зок к нулю при запирании тиристоров. Проконсультируйтесь с локальным дис- трибьютором. Данное отключение не настраивается. Связанные параметры: Нет
Превышение време- ни пуска	 Отключение по максимальному времени пуска может возникнуть при следующих условиях: параметр 1А Ток полной нагрузки двигателя имеет несоответствующее двигателю значение параметр 2D Предел тока был настроен слишком низким параметр 2B Время пуска по рампе был настроен выше настройки для 4А Максимальное время пуска

Индикация Возможная причина/Предлагаемое решение		
	• параметр 2В Время пуска по рампе настроен слишком коротким для	
	нагрузки с высоким моментом инерции при использовании адаптивного	
	управления	
	Связанные параметры: 1А. 2В. 2D. 4А. 4В. 9В. 10В. 10D. 16В	
	где 'X' - это фаза 1. 2 или 3.	
	Тиристор не включается как ожилается. Тиристор может быть неисправен, или	
Ошибка открытия РХ	возможен отказ внутренней проволки	
	Ланное отключение не настраивается	
	следовательно, если этит подключен последовательно, но запрограммирован-	
Завышен ТПН	максимум для последовательного подключения, то возникнет отключение утп	
	при пуске (смотрите диапазоны рабочих токов оля разных мобелей утпт на	
	Если УПП подсоединен к двигателю по схеме с внутренним треугольником, то	
	упп может неправильно обнаружить подсоединение. Обращаитесь к местному	
	поставщику за советом.	
	Связанные параметры: 1А, 9В	
	Данное отключение не настраивается.	
	Частота сети вышла из допустимого диапазона.	
	Проверьте другое оборудование на участке, которое может влиять на силовое	
Частота	питание, в частности, на приводы с регулированием скорости и импульсные	
	источники питания.	
	Если УПП питается от автономного генератора, то может не хватать мощности	
	генератора, или у него может быть неисправен регулятор скорости.	
	Связанные параметры: 4J, 4K, 4L, 16F	
	Проверьте, работают ли вентиляторы охлаждения. Если УПП установлен внутри	
	оболочки, то проверьте достаточность вентиляции.	
	Вентиляторы работают во время пуска, работы и 10 минут после останова УПП.	
	ПРИМЕЧАНИЕ	
перегрев радиатора	У моделей с 0023В до 0053В и 0170В нет вентилятора охлаждения. В моделях с	
	вентиляторами эти вентиляторы работают от пуска до истечения 10 минут по-	
	сле останова.	
	Связанные параметры: 16L	
	Это имя, выбранное для программируемого входа. Смотрите Отключение по	
высокии уровень	входу А	
	Это имя, выбранное для программируемого входа. Смотрите Отключение по	
Высокое давление	входи А	
	Олин из входов УПП настроен на функцию отключения и включен. Проверьте	
Отключение по вхо-	статус входов для определения включенного входа, затем создайте условия	
лу А		
	$\Gamma_{\text{Rg3}2HHB} = \Pi_{\text{anametric}} \cap 64 \cap 68 \cap 60 \cap 61 \cap 61 \cap 61 \cap 61 \cap 61 \cap 61 \cap 61$	
	бытий.	
	• доматело испонал резкое повошение нагрузки. Причиной может ОЫТБ	
	міновенная перегрузка с превышением регулируемого времени задержки.	
Максимальный	связанные параметры: 20, 27, 167	
мгновенный ток	ток двигателя превысил встроенные уставки УПП:	
	• в 7,2 раза значение параметра 1А Ток полной нагрузки двигателя	
	• в 6 раз номинал тока УПП.	
	Причиной может быть заблокированный ротор или электрическая неисправ-	
	ность в двигателе или проводке.	
	Данное отключение не настраивается.	

Индикация	Возможная причина/Предлагаемое решение			
	Связанные параметры: Нет			
	Данное отключение не настраивается.			
Внутренняя ошибка	В УПП произошло отключение по внутренней ошибке. Обратитесь к поставщику			
Х	с вопросом по коду ошибки (Х).			
	Связанные параметры: Нет			
	Данное отключение не настраивается.			
	Во время проверок перед пуском УПП обнаружил потерю указанной фазы.			
	В состоянии работы УПП обнаружил, что ток в данной фазе упал ниже 2% от			
	заданного номинального тока двигателя более чем на 1 секунду, что указывает			
	на обрыв фазы на входе или выходе УПП.			
Потеря фазы L1	Проверьте питание и подключение кабелей к входным и выходным шинам			
Потеря фазы L2	УПП и подключение кабеля к двигателю.			
потеря фазы L3	Потеря фазы может также быть связана с отказом тиристора, в частности, если			
	отказом тиристора является обрыв цепи. Отказ тиристора можно однозначно			
	диагностировать только заменой тиристора и проверкой работоспособности			
	אר אין			
	Связанные параметры: Нет			
	Во время проверок перед пуском пускатель обнаружил закороченный тири-			
	стор или короткое замыкание в шунтирующем контакторе. Если УПП полклю-			
	чен последовательно с двигателем то можно использовать режим 2-фазного			
	ист последовательно с двигателем, то можно использовать режим 2 физиого управления PowerThrough, пока пускатель не булет отремонтирован			
	примечание			
	ний пускателя. Если этт подключен внутри треутольника, то функция DowerThrough це работает			
Jambikahvie LJ-13	гожентноидн не работает. Пускатель, отклоцается по ошибке "Замыхание Ly-Ty" при первой польтие			
	пускатель отключается по ошноке замыкание сх-тх при первои попытке			
	пуска после подачи питания управления. Функция Power Infough не расота-			
	ет, если питание управление цепеи управления отключалось и включалось			
	между пусками.			
	Связанные параметры. 150			
	уппоонаружил падение напряжения управления.			
	• Проверьте источник питание цепеи управления (клеммы А1, А2, А3) и			
	выполните сорос УПП.			
	Если источник питание цепеи управления исправен:			
Низкое напряжение	 может быть неисправно питание 24 В на главной плате управления, или 			
управления	может быть неисправна печатная плата шунтирования (только модели			
	со встроенным шунтирующим контактором). Проконсультируйтесь с			
	локальным дистрибутором.			
	Эта защита не активна в состоянии готовности.			
	Связанные параметры: 16Х			
Низкий уровень	Это имя, выбранное для программируемого входа. Смотрите Отключение по			
, , , , , , , , , , , , , , , , , , ,	входу А.			
Низкое давление	Это имя, выбранное для программируемого входа. Смотрите Отключение по			
пизное давление	входу А.			
	Двигатель достиг максимальной допустимой температуры. Перегрузка может			
	быть вызвана:			
	• Настройки защиты УПП не соответствуют тепловым режимам двигателя			
	• Превышение числа пусков за час			
	• Превышение мощности			
перегрузка двигате-	 Повреждение обмоток двигателя 			
ля (по тепловои мо-	Устраните причину перегрузки и дайте двигателю остыть.			
дели)	Связанные параметры: 1А, 1В, 1С, 1D, 16А			
	ПРИМЕЧАНИЕ			
	Параметры 1С, 1В и 1D определяют величину тока отключения для зашиты			
	двигателя от перегрузки. Настройки параметров 1С. 1В и 1D по умолчанию			
	обеспечивают защиту двигателя от перегрузки: класс 10, ток отключения			

Индикация	Возможная причина/Предлагаемое решение					
	105% от ТПН (ток полной нагрузки) или эквивалентный.					
Перегрузка двигате- ля 2	Смотрите <i>'Перегрузка двигателя'</i> выше. ПРИМЕЧАНИЕ					
	Действует, только если был запрограммирован набор параметров второго					
	двигателя.					
	Связанные параметры: 9А, 9В, 9С, 9D, 9Е, 16А					
	Где 'Х' равен 1, 2 или 3.					
	Двигатель неправильно подключен к УПП - нет последовательного подключе-					
	ния или подключения треугольником.					
Подключение двига-	• Проверьте отдельные соединения двигателя к УПП не предмет обрыва					
теля ТХ	цепи.					
	 Проверьте подключения в клеммной коробке двигателя. 					
	Данное отключение не настраивается.					
	Связанные параметры: Нет					
	• Вход термистора двигателя разрешен, и сопротивление на входе тер-					
	мистора превысило 3,6 кОм более чем на 1 секунду.					
	• Обмотка двигателя перегрелась. Определите причину перегрева и дай-					
	те двигателю остыть перед новым пуском.					
Термистор двигателя	• Обрыв цепи на входе термистора двигателя.					
	ПРИМЕЧАНИЕ					
	Если термистор двигателя больше не используется, то к клеммам В4, В5					
	нужно подключить резистор 1,2 кОм.					
	Связанные параметры: 16					
Сигнал аварии по	Ведущее устройство в сети подало в пускатель команду отключения, или неис-					
последовательной	правность работы сети связи.					
связи или обрыв свя-	Проверьте причины отказа сети связи.					
и сатью)	Связанные параметры: 16К					
	Это имя, выбранное для программируемого входа. Смотрите Откаючение по					
Нет потока	входу А.					
	Это имя, выбранное для программируемого входа. Смотрите Отключение по					
Нет потока	входу А.					
	Проверьте вход А (С53, С54). УПП может быть отключен через программируе-					
Нет готовности	мый вход. Если параметр 6А или 6F настроен на 'Запрет работы УПП' и имеет-					
	ся разомкнутая цепь на соответствующем входе, то УПП не запустится.					
	Данное отключение не настраивается.					
	• Значение параметра за пределами допустимого диапазона. Панель по-					
	кажет первый недопустимый параметр.					
	• При загрузке данных из EEPROM в RAM при включении питания панели					
Параметр вне диапа-	• возникла ошибка.					
зона	• Набор параметров или их значения в панели управления не соответ-					
	ствуют параметрам в УШІ.					
	• Было выбрано "Загруз. набор парам.", но нет сохраненного файла.					
	Соросьте ошиоку. Пускатель загрузит настроики по умолчанию. Если проблема					
	не устранена, то обращаитесь к местному дистрибьютору.					
Чередование фаз	Пеправильное чередование фаз на входе силового питания уппт (L1, L2, L5).					
	Провервте чередование фаз на ст, се, съ и убедитесь, что настройка параметра					
	Связанные параметры: 46					
	Это имя, выбранное для программируемого входа. Смотрите Откаючение до					
плк	входу А.					
	Данное отключение не настраивается.					
	В пускателе нет силового питания на одной или нескольких фазах при получе-					
Потеря мощности	нии команды пуска.					
	Проверьте, что сетевой контактор замкнут при подаче команды пуска и остает-					

Индикация	Возможная причина/Предлагаемое решение				
	ся замкнутым до конца плавного останова. Проверьте предохранители. В слу-				
	чае проверки УПП с двигателем малой мощности он должен потреблять н				
	нее 2% от минимального значения уставки тока по каждой фазе.				
	Связанные параметры: Нет				
	Это имя, выбранное для программируемого входа. Смотрите Отключение по				
UTRA3 Hacuca	входу А.				
	Указывает на короткое замыкание в датчике RTD / PT100. Проверьте и устрани-				
пеисправность цепи	те неисправность.				
	Связанные параметры: Нет				
	Возникла неисправность связи между УПП и модулем связи.				
Ошибка внутренней	• Имеется внутренняя ошибка связи внутри УПП. Обращайтесь к местно-				
СВЯЗИ	му дистрибьютору.				
	• Связанные параметры: 16Ј				
2	Это имя, выбранное для программируемого входа. Смотрите Отключение по				
запрет работы упп	входу А.				
	Вход термистора двигателя разрешен, и:				
	• Сопротивление на входе упало ниже 20 Ом (сопротивление большин-				
Цепь термистора	ства термисторов в холодном состоянии превышает это значение), или				
	произошло короткое замыкание. Проверьте и устраните неисправность.				
	Связанные параметры: Нет				
	В УПП включен внутренний шунтирующий контактор, и он потребляет очень				
Превышение време-	большой ток при работе (достигнута кривая отключения по защите 10А, или ток				
ни перегрузки	двигателя возрос до 600% от номинального).				
	Связанные параметры: Нет				
	Ток двигателя резко снизился, что вызвано потерей нагрузки. Причины могут				
	включать поломку компонентов (валы, ремни или муфты) или работу насоса				
илинимальный ток	без жидкости.				
	Связанные параметры: 4C, 4D, 16C				
	Данное отключение не настраивается.				
Неподдерживаемая	Выбранная функция недоступна (например, толчки не поддерживаются в кон-				
функция	фигурации внутреннего треугольника).				
	Связанные параметры: Нет				
Рибрация	Это имя, выбранное для программируемого входа. Смотрите Отключение по				
виорация	входу А.				
	Где 'Х' равен 1, 2 или 3.				
	Внутренний отказ (отказ печатной платы). Проконсультируйтесь с локальным				
Ошибка VZC PX	дистрибутором.				
	Данное отключение не настраивается.				
	Связанные параметры: Нет				

11.3. Обычные отказы

В этой таблице описаны ситуации, когда УПП работает не так, как ожидается, но не отключается и не дает предупреждения.

Признак	Возможная причина / Предлагаемое решение		
	Проверьте вход А (С53, С54). УПП может быть отключен через програм-		
	мируемый вход. Если параметр 6А или 6F настроен на 'Запрет Работы		
Пускатель нетотов	УПП', и имеется разомкнутая цепь на соответствующем входе, то УПП не		
	запустится.		
УПП не реагирует на кноп- УПП может работать в режиме дистанционного управления. Е			
ки START (ПУСК) и RESET	режиме дистанционного управления, то светодиод Local на панели пога-		
(СБРОС) на панели управ-	шен. Один раз нажмите кнопку L/R (МЕСТНОЕ/ДИСТАНЦИОННОЕ) для		
ления.	перехода в местное управление.		
УПП не реагирует на ко-	УПП может работать в режиме местного управления. Если УПП в режиме		
манды со входов управле-	местного управления, то индикатор Local на панели светится. Один раз		
ния.	нажмите кнопку L/R (МЕСТНОЕ/ДИСТАНЦИОННОЕ) для перехода в ди-		

Признак	Возможная причина / Предлагаемое решение
	станционное управление.
	Возможно неверное подключение цепей управления. Проверьте, что
	входы дистанционного пуска, останова и сброса правильно сконфигури-
	рованы (смотрите Схемы цепей управления на стр. 10 где описано).
	Возможны неправильные сигналы на дистанционных входах. Проверьте
	сигналы, активируя каждый вход по очереди. На панели пускателя дол-
	жен светиться индикатор соответствующего входа управления.
	УПП может ожидать окончания задержки повторного пуска. Длитель-
	ность залержки повторного пуска залается параметром 4М Залержка
	Леигатель может быть слишком нагрет и пуск запрешен. Если параметр
	4N Проверка температуры двигателя в режиме Проверка. УПП разрешает
	пуск, только тогла, когла вычислит, что у лвигателя есть запас по темпе-
УПП не реагирует на ко-	ратуре нагрева для успешного пуска. Перед следующей попыткой пуска
манду пуска в местном или	подождите остывания двигателя.
в дистанционном режиме	УПП может быть отключен полачей сигнала на программируемых вхол.
управления.	Если параметр 6А или 6Е настроен на 'Запрет Работы УПП', и имеется
	разомкнутая цель на соответствующем входе то УПП не запустится. Если
	запрет работы УПП больше не требуется, замкните цель на вхоле
	примечание
	Параметр 60 Местное/Листаниионное действует, когда работа кнопки
Сброс не происходит после	Лля перезапуска необхолимо отключить и вновь полать листанционный
автосброса при использо-	2-проводной сигнал пуска
вании листанционного	
управления в 2 проводной	
Конфинурации.	
	режиме дистанционного управления при 5-х или 4-х проводном подклю-
	чений ценей управления
Насбрасываемое отидионе-	
	вход термистора разрешен, если установлена перемычка и включена за-
	щита от короткого замыкания.
	Снимите перемычку и затем загрузите наобр параметров по умолчанию.
ка между входом терми-	Это запрещает вход термистора и сорасывает отключение.
	Подключите ко входу термистора резистор 1,2 ком. Пороключите защити тормистора в $T_{0,q}$ и о укуриса! (поромотр 161)
политер политер	Переключите защиту термистора в только журнол (параметр топ).
двигателя, подключаемый	
Пуска/ Останова изменяет	режиме дистанционного управления при 3-х или 4-х проводном подклю-
	чений ценей управления.
управления в 2-проводной	
конфигурации.	
	новедение при пуске может оыть нестаоильным при использовании низ-
	кои настроики ток полнои нагрузки двигателя (параметр 1А). Это может
УПП неправильно управ-	сказаться при использовании неоольших двигателей с номинальным то-
ляет двигателем в процес-	
се пуска.	конденсаторы коррекции коэффициента мощности (РЕС) должны быть
	подключены со стороны питания УШІ. Для управления специальным
	контактором конденсатора корректора коэф. мощности подключите кон-
	тактор к клеммам реле работы.

Признак	Возможная причина / Предлагаемое решение		
	Если пусковой ток слишком низкий, двигатель может не развивать доста-		
	точный момент для разгона и выхода на номинальную скорость. В УПП		
	может сработать защита по превышению времени пуска.		
	ПРИМЕЧАНИЕ		
Двигатель не развивает	Убедитесь, что значения параметров пуска двигателя соответствуют		
полной скорости.	установке и вы используете нужный профиль пуска двигателя. Если		
	параметр 6А или 6F настроен в Выбор набора параметров, то про-		
	верьте, что соответствующий вход в нужном состоянии.		
	Возможно, произошло заклинивание нагрузки. Проверьте, не произошло		
	ли серьезной перегрузки или блокировки ротора.		
	Для включения тиристоров в УПП нужен ток не менее 5 А. Если вы прове-		
двигатель работает с пе-	ряете УПП на двигателе с током полной нагрузки менее 5 А, то тиристоры		
ребоями.	могут включаться неправильно.		
	Если УПП подсоединен к двигателю по схеме с внутренним треугольни-		
Двигатель работает с пе-	ком, то УПП может неправильно обнаружить подсоединение. Обращай-		
ребоями и шумом.	тесь к местному поставщику за советом.		
	Настройки плавного останова могут быть непригодными для двигателя и		
Плавный останов заканчи-	нагрузки. Проверьте настройки параметров 2Н, 2І, 10Н и 10І.		
вается слишком быстро.	Если у двигателя очень легкая нагрузка, то действие плавного останова		
	ограничено.		
Не работают функции	Это функции доступны только для конфигурации последовательного		
адаптивного управления,	подключения. Если УПП подключен в конфигурации внутреннего тре-		
торможения, толчкового	угольника, то эти функции не работают.		
режима и PowerThrough			
После выбора адаптивного	Первый пуск с адаптивным управлением выполняется в режиме ограни-		
пуска двигатель использо-	чения тока, чтобы пускатель определил характеристики двигателя. В по-		
вался с обычным пуском и	следующих пусках используется адаптивное управление.		
(или) второй пуск отличал-			
ся от первого.			
	Пускатель отключается по "Замыкание Lx-Tx" при первой попытке пуска		
Функция PowerThrough не	после подачи питания управления. Функция PowerThrough не работает,		
работает при ее выборе.	если питание управление отключалось и включалось между пусками.		
Пускатель "ожидает дан-	Панель не получает данные от платы управления. Проверьте подключе-		
ные"	ние кабеля и установку дисплея на УПП.		
На дисплее панели виден	Панель может быть плохо закреплена, что приводит к неустойчивому		
искаженный текст.	контакту. Затяните винты крепления панели или плотно прижмите ее.		
	Проверьте, что винты крепления панели не были затянуты слишком туго.		
Дисплей искажен	Немного ослабьте винты.		
	Убедитесь, что вы сохраняете новое значение нажатием кнопки MENU		
	(СОХРАНИТЬ) после настройки параметра. Если вы нажмете EXIT (Bbl-		
	ХОД), то изменение не будет сохранено.		
	Проверьте наличие блокировки настроек (параметр 15В) в 4me-		
	ние/запись. Если задана блокировка настроек в виде Только чтение, то		
Нельзя сохранить настрой-	настройки можно будет просматривать, но нельзя изменять. Для снятия		
ки параметров.	блокировки настроек вы должны знать зашитный кол доступа.		
	ЕЕРROM в панели управления может быть неисправно. Неисправная		
	ЕЕРROM также вызывает отключение УПП. и панель показывает сообще-		
	ние Параметр XX вне диапазона. Проконсультируйтесь с локальным		
	дистрибутором.		
	УПП не активирует имитацию работы при трехфазном полключении пи-		
ВНИМАНИЕ! Снять сетевое	тания. Это предотвращает случайный пуск прямым полключением к сети		
напр.	(DOL).		

12. Приложение

12.1. Спецификации

16. Код модели

Номинальные токи УПП

Модель	Номинальный ток при 380 В	Номинальный ток при 660 В
SSD700-005-Z-RU	11	
SSD700-007-Z-RU	15	
SSD700-011-Z-RU	22	
SSD700-015-Z-RU	30	
SSD700-018-Z-RU	37	
SSD700-022-Z-RU	44	
SSD700-030-Z-RU	60	
SSD700-037-Z-RU	74	
SSD700-045-Z-RU	90	
SSD700-055-Z-RU	110	
SSD700-075-Z-RU	150	
SSD700-090-Z-RU	180	
SSD700-115-Z-RU	230	
SSD700-132-Z-RU	264	
SSD700-160-Z-RU	320	
SSD700-185-Z-RU	370	
SSD700-200-Z-RU	400	
SSD700-220-Z-RU	440	
SSD700-250-Z-RU	500	
SSD700-280-Z-RU	560	
SSD700-320-Z-RU	640	
SSD700-350-Z-RU	700	
SSD700-400-Z-RU	820	
SSD700-450-Z-RU	920	
SSD700-500-Z-RU	1000	
SSD700-600-Z-RU	1200	
SSD700-700-Z-RU	1410	
SSD700-800-Z-RU	1600	

Размеры и вес

Модель	Α	В	С	D	E	Bec
5,5–55 кВт	152	92	292	269	215	5.2
75–110 кВт	274	160	408	385	260	17.5
132–400 кВт	440	320 (160*2)	560	530	290	35.5
450–800 кВт	600	480 (240*2)	823	788	393	90.0

12.2. Значения параметров

Если вам нужна помощь от поставщика или специалиста техобслуживания, то перепишите настройки всех параметров в приведённую ниже таблицу.

1	Данные двигателя 1	Настройки параметров 1	Настройки параметров 2
1A	Ток полной нагрузки двигателя		
1B	Время блокировки ротора		
1C	Ток блокированного ротора		
1D	Сервис-фактор двигателя		

2	Реж. пуска/остан. 1
2A	Режим пуска
2B	Время пуска по рампе
2C	Начальный ток
2D	Предел тока
2 E	Адаптивный профиль пуска
2F	Время ускоренного пуска
2G	Ток ускоренного пуска
2H	Режим останова
21	Время останова
2J	Адаптивный профиль останова
2K	Коэффициент адаптивного управления
2L	Тормозной момент
2M	Время торможения

3	Автопуск/останов	
3A	Автозапуск: Тип	
3B	Автозапуск: Время	
3C	Автостоп: Тип	
3D	Автостоп: Время	

4	Уставки защиты	
4A	Максимальное время пуска	
4B	Максимальное время пуска 2	
4C	Минимальный ток	
4D	Задержка минимального тока	
4E	Мгновенный максимальный ток	
4F	Задержка мгновенного максимального тока	
4G	Чередование фаз	
4H	Дисбаланс тока	
41	Задержка дисбаланса тока	
4J	Проверка частоты	
4K	Отклонение частоты	
4L	Задержка по частоте	
4M	Задержка повторного пуска	
4N	Проверка температуры двигателя	
40	Уровень отказа земли	

4P	Задержка отказа земли	
4Q	Зарезервирован	
4R	Зарезервирован	
4S	Зарезервирован	
4T	Зарезервирован	

5	Отключения с автосбросом	
5A	Настройка автосброса	
5B	Максимальное число автосбросов	
5C	Задержка сброса групп А и В	
5D	Задержка сброса группы С	

6	Входы	
6A	Функция входа А	
6B	Сообщение входа А	
6C	Вход А: отключения	
6D	Задержка отключения по входу А	
6E	Начальная задержка отключения по входу А	
6F	Вход В: Функция	
6G	Вход В: Имя	
6H	Вход В: отключения	
61	Вход В: задержка отключения	
6J	Вход В: начальная задержка	
6K	Вход С: Функция	
6L	Вход D: Функция	
6M	Нормальное состояние дистанционного сброса	
6N	Отключение по аналоговому входу	
60	Шкала аналогового входа	
6P	Уставка аналогового отключения	
6Q	Местное/Дистанционное	
6R	Связь - дистанционное управление	

7	Выходы
7A	Реле А: Функция
7B	Реле А: задержка замыкания
7C	Реле А: задержка размыкания
7D	Реле В: Функция
7E	Реле В: задержка замыкания
7F	Реле В: задержка размыкания
7G	Функция реле С
7H	Реле С: задержка замыкания
71	Реле С: задержка размыкания
7J	Реле D: функция
7K	Реле Е: функция
7L	Реле F: функция
7M	Сигнал пониженного тока
7N	Сигнал повышенного тока
70	Сигнал температуры двигателя
7P	Аналоговый выход А
7Q	Аналоговый выход А: шкала
7R	Аналоговый выход А: максимум
7S	Аналоговый выход А: минимум
7T	Аналоговый выход В
7U	Шкала аналогового выхода В
7V	Аналоговый выход В: настройка максимума
7W	Аналоговый выход В: настройка минимума
8	Дисплей
----	-----------------------------
8A	Язык
8B	Действие кнопки F1
8C	Действие кнопки F2
8D	Отображение А или кВт
8E	Экран - сверху слева
8F	Экран - сверху справа
8G	Экран - снизу слева
8H	Экран - снизу справа
81	Данные графика
8J	Время графика
8K	Максимум графика
8L	Минимум графика
8M	Калибровка тока
8N	Номинальное напряжение сети
80	Калибровка напряжения

9	Данные двигателя 2	
9A	Двойная тепловая модель	
9B	ТПН двигателя 2	
9C	Время блокировки ротора 2	
9D	Ток блокированного ротора-2	
9E	Сервис-фактор двигателя 2	

10	Реж. пуска/остан. 2
10A	Режим пуска 2
10B	Время пуска по рампе 2
10C	Начальный ток 2
10D	Предел тока 2
10E	Адаптивный профиль пуска 2
10F	Время ускоренного пуска 2
10G	Ток ускоренного пуска 2
10H	Режим останова 2
101	Время останова 2
10J	Адаптивный профиль останова 2
10K	Коэффициент адаптивного управления 2
10L	Тормозной момент 2
10M	Время торможения 2

11	Температура с RTD
11A	RTD/PT100 A °C
11B	RTD/PT100 B °C
11C	RTD/PT100 C °C
11D	RTD/PT100 D °C
11E	RTD/PT100 E °C
11F	RTD/PT100 F °C
11G	RTD/PT100 G °C

12	Двигатели с фазным ротором	
12A	Рампа скорости 1	
12B	Рампа скорости 2	
12C	Время переключения	
12D	Торможение коллектора	

Расширенные

15A	Код доступа	
15B	блокировка настроек	
15C	Аварийный режим	
15D	Работа при КЗ тиристора	

16	Операции защиты	
16A	Перегрузка двигателя	
16B	Максимальное время пуска	
16C	Минимальный ток	
16D	Мгновенный максимальный ток	
16E	Дисбаланс тока	
16F	Частота	
16G	Вход А отключения	
16H	Вход отключ. В	
161	Термистор двигателя	
16J	Таймаут связи	
16K	Отключение по связи с сетью	
16L	Перегрев радиатора	
16M	Батарея/часы	
16N	Короткое замыкание на землю	
160	RTD/PT100 A	
16P	RTD/PT100 B	
16Q	RTD/PT100 C	
16R	RTD/PT100 D	
16S	RTD/PT100 E	
16T	RTD/PT100 F	
16U	RTD/PT100 G	
16V	Зарезервирован	
16W	Зарезервирован	
16X	Упр.низк.напряж.	
20	Ограничения	

13. Работа по протоколу MODBUS

13.1. Важная информация

При удаленном управлении устройством плавного пуска необходимо принять соответствующие меры безопасности. Предупредите персонал, что привод может запуститься без предупреждения.

При монтаже следуйте инструкциям в данном руководстве и учитывайте все нормы монтажа электроустановок.

При монтаже и использовании шины RS485 учитывайте соответствующие международные стандарты.

13.2. Настройки

Настройка протокола и адреса

- 1. Адрес связи устанавливается DIP-переключателями
- 2. Скорость обмена 9600 бит/с
- 3. Протокол: используется только режим RTU
- 4. Формат связи зафиксирован на 8:N:1

13.3. Функции Modbus

Интерфейс Modbus поддерживает следующие функции:

- 03 Чтение нескольких регистров
- 06 Запись в регистр

Функция широковещательной передачи не поддерживается

Адрес чтения:

- Чтение нескольких регистров от 40003 до 40008
- Запись в регистр 40002
- Чтение и запись нескольких регистров от 40009 до 40599 (регистр 40009 соответствует параметру расширенного меню 1А, 40010 – параметру 1В и т.д.)
- Запись в регистр 40002 или несколько регистров от 40600 до 40631

13.4. Регистры Modbus

Все регистры могут читаться и записываться без ограничений (если не указано иное)

Регистр	Описание	Биты	Подробности
			Отправьте команду на УПП с нужным значением:
			1 = пуск
			2 = стоп
40002	Команда (одно-	0-2	3 = сброс
40002	кратная запись)	3-7	4 = быстрый останов (выбег)
			5 = отключение связи
			6 = пуск с параметрами 1
			7 = пуск с параметрами 2
			1 = готов
		0-3	2 = пуск
			3 = работа
			4 = останов (включая торможение)
			5 = задержка повторного пуска (включая контроль температуры)
			6 = авария
			7 = режим программирования
40003	Состояние УПП		8 = толчковый режим вперед
			9 = толчковый режим назад
		4	1 = вращение вперед (только при бит 6 = 1)
		5	1 = ток превышает номинальный
		6	0 = не инициализирован
		0	1 = инициализация
		7	0 = связь в норме
			1 = неполадки связи
40004	Код ошибки	0-7	См. коды ошибок

Регистр	Описание	Биты	Подробности		
40005 ²	Ток двигателя	0-7	Средний ток по трем фазам двигателя		
40006	Температура дви- гателя	0-7	Температура двигателя 1 (тепловая модель)		
		0-2	Версия списка параметров		
40007	данные упп	3-7	Тип УПП		
40008	Версия протокола последовательной связи	0-7			
40009 4	Обработка пара- метров (один или несколько, запись или чтение)	0-7	Обработка программируемых параметров УПП		
40600	Версия	0-5 6-8 9-15	Бинарный номер версии протокола Номер версии списка параметров Тип УПП		
40601	Зарезервировано				
40602 ⁵	Номер изменен- ного параметра	0-7 8-15	0 = параметр не изменен 1-255 = индекс номера последнего изменённого параметра Общее количество доступных параметров		
40603 ⁵	Значение изме- ненного парамет-	0-13	Значение последнего измененного параметра (то же, что и в ре- гистре 40602)		
	ра	14-15	Зарезервировано		
40604	Состояние УПП	0-4 5 6 7 8	 0 = зарезервировано 1 = готов 2 = пуск 3 = работа 4 = останов 5 = не готов (задержка повторного пуска, сброс измерения температуры, эмуляция работы) 6 = авария 7 = режим программирования 8 = толчковый режим вперед 9 = толчковый режим назад 1 = предупреждение 0 = не инициализирован 1 = инициализация 0 = местное управление 1 = параметр не был изменен 0 = отрицательная последнего параметра, параметр был изменен 0 = отрицательная последовательность фаз 		
		9 10-15	0 = отрицательная последовательность фаз 1 = положительная последовательность фаз См. коды ошибок		
40605 ²	Ток	0-13 14-15	Среднеквадратичный ток по трем фазам Зарезервировано		
40606	Ток	0-9 10-15	Ток (в % от номинального тока двигателя) Зарезервировано		
40607	Температура дви- гателя	0-7 8-15	Тепловая модель двигателя 1 (%) Тепловая модель двигателя 2 (%)		
40608 ⁷	Мощность	0-11 12-13 14-15	Мощность Отношение мощности Зарезервировано		
40609	Коэффициент	0-7	100% - коэффициент мощности 1		
	мощности (%)	8-15	Зарезервировано		
40610	Напряжение	0-13	Среднеквадратичное значение напряжения по трем фазам		

Регистр	Описание	Биты	Подробности
		14-15	Зарезервировано
40611 2	Тои	0-13	Среднеквадратичный ток в фазе 1
40611	TOR	14-15	Зарезервировано
40612 ²	Тои	0-13	Среднеквадратичный ток в фазе 2
40012	TOR	14-15	Зарезервировано
40612 ²	Тои	0-13	Среднеквадратичный ток в фазе 3
40015	TOR	14-15	Зарезервировано
40614	Напражание	0-13	Среднеквадратичное значение напряжения фазе 1
40014	папряжение	14-15	Зарезервировано
40645	Напряжение	0-13	Среднеквадратичное значение напряжения фазе 2
40015		14-15	Зарезервировано
40616	Напряжение	0-13	Среднеквадратичное значение напряжения фазе 3
40010		14-15	Зарезервировано
40617	Версия списка па-	0-7	Младший байт номера версии
40017	раметров	8-15	Старший байт номера версии
			Для всех входов: 0 = разомкнут, 1 = замкнут
			0 = пуск
	Состояние лис-		1 = стоп
40618		0-15	2 = сброс
	кретных входов		3 = вход А
			4 = Вход В
			5-15 = зарезервировано
40619- 40631	Зарезервировано		Зарезервировано

- 1. Перед использованием этой функции убедитесь, что программируемый вход не настроен на выбор группы параметров двигателя.
- 2. Для моделей до 22 кВт включительно это значение в 10 раз больше, чем значение на экране.
- См. полный список параметров в соответствующем руководстве. Первый параметр всегда связан с регистром 40009. Последний параметр связан с регистром 40XXX, где XXX = 008 + общее количество доступных параметров.
- 5. Чтение регистра 40603 (Значение измененного параметра) сбрасывает регистр 40602 (Номер измененного параметра) и 40604 (Параметр был изменен). Всегда считывайте регистры 40602 и 40604, прежде чем считывать регистр 40603.
- 6. Биты 10-15 регистра 40604 содержат код предупреждения или ошибки. Если значение битов 0-4 равно 6, то УПП остановлен по аварии. Если бит 5 = 1, то имеется предупреждение, но УПП продолжает работать.
- 7. Отношение мощности:
 - 0 = мощность надо умножить на 10 для получения значения в Вт
 - 1 = мощность надо умножить на 100 для получения значения в Вт
 - 2 = мощность в кВт
 - 0 = мощность надо умножить на 10 для получения значения в кВт

13.5.	Коды	ошибок
-------	------	--------

Код ошибки	Описание
1	Превышено время пуска
2	Двигатель 1 перегружен (по тепловой модели)
3	Термистор двигателя
4	Дисбаланс токов
5	Частота (мощность)
6	Последовательность фаз
7	Мгновенная перегрузка по току
8	Неисправность силовой цепи
9	Пониженный ток
10	Перегрев радиатора
11	Ошибка подключения двигателя

12	Сигнал ошибки на входе А	
13	Номинальный ток слишком велик	
14	Неподдерживаемая опция / функция	
15	Ошибка связи (между интерфейсом и УПП)	
16	Ошибка связи (между интерфейсом и сетью)	
17	Внутренняя ошибка Х (где Х – код ошибки из таблицы ниже)	
20	Неисправность заземления	
23	Значение параметра вне допустимого диапазона	
24	Сигнал ошибки на входе В	
25	Неисправность шунтирующего контактора	
26	Потеря фазы L1	
27	Потеря фазы L2	
28	Потеря фазы L3	
29	Короткое замыкание L1-T1	
30	Короткое замыкание L2-T2	
31	Короткое замыкание L3-T3	
32	Двигатель 2 перегружен (по тепловой модели)	
33	Длительная перегрузка (перегрузка шунтирующего контактора)	
34	Перегрев тиристоров	
35	Неисправность батареи часов	
36	Неисправность цепи термистора	
37	Перегрев RTD А	
38	Перегрев RTD В	
39	Перегрев RTD С	
40	Перегрев RTD D	
41	Перегрев RTD Е	
42	Перегрев RTD F	
43	Перегрев RTD G	
45	Неисправность цепи RTD	
46	Ошибка аналогового входа	
255	Нет ошибки	

13.6. Внутренняя ошибка Х

В таблице ниже приведены внутренние ошибки, соответствующие коду ошибки 17.

Внутренняя ошибка	Сообщение на дисплее
70-72	Ошибка чтения тока фаз Lx
73	Внимание! Отключите питание
74-76	Ошибка подключения двигателя Тх
77-79	Ошибка переключения Рх
80-82	Внутренняя ошибка VZC Рх
83	Пониженное напряжение питания цепей управления
04 00	Внутренняя ошибка Х
04-90	Свяжитесь с поставщиком

13.7. Примеры

Команда: Пуск

	Адрес УПП	Код функции	Адрес регистра	Данные	CRC
Вход	20	06	40002	1	CRC1-CRC2
Выход	20	06	01	1	CRC1-CRC2

Состояние УПП: Работа

	Адрес УПП	Код функции	Адрес регистра	Данные	CRC
Вход	20	03	40003	1	CRC1-CRC2
Выход	20	03	2	Xxxx0011	CRC1-CRC2

Код ошибки: Motor has passed

	Адрес УПП	Код функции	Адрес регистра	Данные	CRC
Вход	20	03	40004	1	CRC1-CRC2
Выход	20	03	3	00000010	CRC1-CRC2

Загрузка номера параметра (Параметр 1А)

	Адрес УПП	Код функции	Адрес регистра	Данные	CRC
Вход	20	03	40009	1	CRC1-CRC2
Выход	20	03	03	600	CRC1-CRC2

Запись параметра Режим останова (2Н), значение = 10

	Адрес УПП	Код функции	Адрес регистра	Данные	CRC
Вход	20	06	40020	10	CRC1-CRC2
Выход	20	06	019	10	CRC1-CRC2

13.8. Коды ошибок Modbus

Код	Описание	Примеры
01	Неподдерживаемый код функции	Функция отличается от 03 или 06
02	Неправильный адрес данных	Неправильный номер регистра
03	Невозможно прочесть данные	Регистр не разрешает чтение данных
04	Невозможно записать данные	Регистр не разрешает запись данных
05		Множественная передача данных вне диапазона, или раз-
	данные вне диапазона	мер данных больше 125
06	Неправильная команда	Например, запись 6 в регистр 40003
07	Неправильный параметр для чтения	Неправильный номер параметра
00		Неправильный номер параметра, параметр только для чте-
08	пеправильный параметр для записи	ния или скрытый параметр

13.9. Удаленное управление по Modbus

Интерфейс Modbus может использоваться для удаленного управления УПП по шине RS485. Подробнее см. инструкции по удаленному управлению.

13.10. Заземление и экранирование

Для передачи данных рекомендуется использовать экранированную витую пару с заземленным экраном. Экран на обоих концах кабеля должен быть соединен с клеммами заземления на приборах и шиной заземления.

13.11. Терминальный резистор

На обоих концах длинных кабелей RS485, чувствительных к сильным помехам, необходимо устанавливать терминальные резисторы.

1: Устройство-мастер

- 2: Репитер
- 3: Устройство плавного пуска

Сопротивление резисторов должно соответствовать сопротивлению кабеля и обычно равно 120 Ом. Не используйте проволочные резисторы.

13.12. Подключение кабеля RS485

Рекомендуется использовать последовательное соединение приборов. Кабели к каждому прибору под-ключаются параллельно.

13.13. Спецификация соединения в сеть RS485 для удаленного управления

Входное сопротивление: 12 кОм Диапазон напряжений: -7B – +12B Чувствительность входа: ±200 мВ Минимальное напряжение на дифференциальном выходе: 1,5 В (максимальная нагрузка 54 Ом)

14. Дополнительные функции

14.1. Интерфейс Profibus и интерфейс подключения пульта

Profibus представляет собой стандарт последовательной связи с автоматическим подключением к сети. Это открытый протокол, изначально соответствовавший стандарту DIN19245 (Германия), а затем европейскому стандарту EN50170 Volume 2. Profibus был разработан компанией Siemens и широко используется в Европе. Данный УПП может быть оборудован опциональной платой Profibus, а также имеет интерфейс связи с пультом по 8-проводному кабелю.

выносного пульта (мм)

14.2. Вынос панели управления

ООО "РусАвтоматизация"

454010 г. Челябинск, ул. Гагарина 5, оф. 507 тел. 8-800-775-09-57 (звонок бесплатный), +7(351)799-54-26, тел./факс +7(351)211-64-57 info@rusautomation.ru; русавтоматизация.рф; <u>www.rusautomation.ru</u>