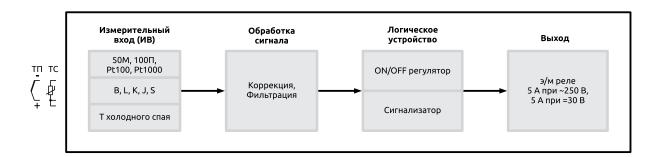


Терморегуляторы серии ECD100 и ECD110

ECD100

Двухпозиционный регулятор температуры

ECD100 — серия одноканальных измерителей-регуляторов, поддерживающих работу с наиболее распространенными датчиками температуры и осуществляющих управление по ON/OFF (двухпозиционному) закону регулирования. В качестве выходного устройства используется э/м реле с перекидным контактом (HO+H3).


Приборы выпускаются в двух типоразмерах корпуса: в щитовом исполнении с лицевой панелью размером 48х48 мм и в корпусе с креплением на DIN-рейку.

Особенности

- Измерение температуры с помощью распространенных типов термопар и термосопротивлений.
- Точность измерения температуры ±0,25%.
- Быстрый опрос измерительного входа 0,1 сек.
- Работа по ON/OFF (двухпозиционному) закону регулирования. Поддержка режимов «Нагревателя» и «Холодильника».
- Работа как с обычными датчиками температуры (50M, Pt100 и тд), так и с высокотемпературными термопарами типа K(TXA), B(TПР), S(ТПП).

- Режим фиксации выхода прибора при превышении заданного порога с ручным сбросом.
- Два типоразмера корпуса: компактный щитовой 48х48мм и с креплением на DIN-рейку.
- Доступна задержка включения и отключения выхода.
- Режим блокировки кнопок управления (режим LOC).
- Прост в эксплуатации.

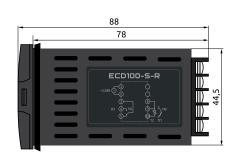
Функциональная схема

Коррекция измеренной температуры

ECD100 поддерживает работу с основными типами датчиков температуры, используемых в промышленности. Это термопары типа L, J, K, S, B, термопреобразователи сопротивления 50M, 100П, Pt100, Pt1000. Не-

смотря на высокую точность измерения температуры, у пользователя есть дополнительная возможность корректировки показаний датчиков, используя параметры сдвига и наклона характеристики датчика.

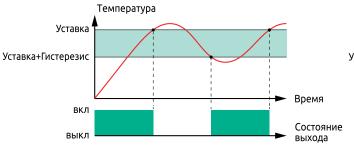
Области применения



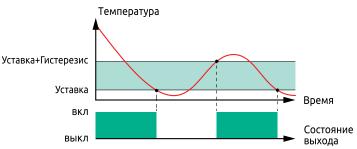
Общие технические характеристики

Характеристики	Значения
Измерительный вход (ИВ)	термосопротивление (TC): 50M, 100П, Pt100, Pt1000 термопара (ТП): L, J, K, S, B
Предел основной приведенной погрешности	TC (100Π, Pt100, Pt1000): ±0,25 % TC (50M): ±0,5 % TΠ: ±0,25 %
Предел дополнительной приведенной погрешности	±0,1 % на каждые 10 °C температуры окружающего воздуха относительно (20±5) °C
Время опроса измерительного входа (ИВ)	0,1 c
Метод регулирования	ON/OFF (двухпозиционный) регулятор, Сигнализатор
Тип выходного устройства (ВУ)	э/м реле (HO+H3; 5 A при ~250 B, 3 A при =30 B)
Условия окружающей среды при эксплуатации и хранении	температура окружающего воздуха: -20+50 °C относительная влажность воздуха не более 80 % (без образования конденсата)
Степень защиты обеспечиваемая оболочкой	корпус S (48х48): IP54 (лицевая сторона), IP20 (задняя сторона); корпус D2 (DIN-рейка): IP20
Допустимый диапазон напряжения питания	от 190 до 240 В переменного тока

Габаритные размеры, мм



ECD100-S-R


ECD100-D2-R

Регулирование по двухпозиционному закону

ECD100 позволяет регулировать температуру по двухпозиционному (ON/OFF) закону регулирования как в режиме «Нагреватель» так и в режиме «Холодильник».

Пример работы в режиме «Нагреватель»

Пример работы в режиме «Холодильник»

Защита параметров и настроек регулятора

Для защиты параметров прибора от намеренных противоправных или непреднамеренных случайных изменений регулятор имеет несколько уровней защиты:

- 1) Все настраиваемые параметры прибора могут быть защищены с помощью пароля.
- 2) Есть возможность задать допустимый (разрешенный) диапазон уставки регулятора. Например, если

ECD100 управляет вентиляционной установкой, то в настройках прибора можно ограничить доступный пользователю диапазон уставки от +15 до +27 °C.

3) Возможность блокировки кнопок лицевой панели. При любом нажатии на кнопки будет появляться сообщение о блокировке экрана. Блокировка включается и отключается одновременным нажатием кнопок «ВВЕРХ» и «ВНИЗ».

Защита оборудования от перегрева

ECD100 имеет встроенное реле с перекидным контактом (HO+H3). Это удобно при создании различных схем защиты оборудования от перегрева.

Поддержка различных типов датчиков температур, в том числе и высокотемпературных термопар типа S(ТПП) или В (ТПР) дает возможность защиты оборудования, работающего при температуре более 1000°C.

Ключевой возможностью прибора при защите от перегрева является возможность фиксации включенного выхода при превышении аварийной температуры. Отключение выхода возможно только вручную, одновременным нажатием и удержанием кнопок «ВНИЗ» «ВВЕРХ» в течении 3х секунд.

Код заказа

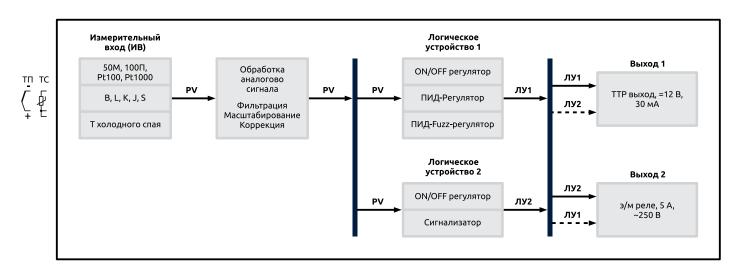
ECD100-D2-R	Исполнение на DIN-рейку	
ECD100-S-R	Щитовое исполнение корпуса	SE S

ECD110

ПИД-регулятор температуры

ЕСD110 – это серия новых компактных регуляторов температуры, предназначенных для точного поддержания температуры по ПИД закону регулирования. Приборы серии имеют два выхода: первый выход типа ТТР предназначен для бесконтактного управления твердотельными реле с управляющим сигналом от 3 до 32 В пост. тока, второй выход типа э/м реле.

Любой из двух выходов может быть управляющим, второй оставшийся выход может использоваться для сигнализации о превышении допустимой температуры или индикации режима работы прибора.


Приборы серии ECD110 выпускаются в щитовом корпусе с лицевой панелью 48х48 мм.

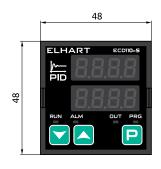
Особенности

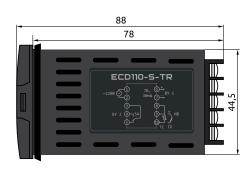
- Измерение температуры с помощью разных типов термопар и термосопротивлений.
- Быстрый опрос измерительного входа 0,1 сек.
- Работа по ПИД и ON/OFF (двухпозиционному) закону регулирования. Поддержка режимов «Нагреватель» и «Холодильник».
- Поддержка ПИД-Fuzzy режима управления для машин и станков с циклической загрузкой/ разгрузкой.
- Эффективные методы автоматической настройки ПИД регулятора: по кривой разгона и по колебаниям системы.
- Два выходных устройства, любое из которых может быть управляющим, а второе использо-

- ваться для сигнализации или индикации режима работы (задается в настройках).
- TTP-выход выдает напряжение 12В пост. тока и имеет достаточную мощность, чтобы управлять группой из нескольких твердотельных реле.
- Восемь режимов работы сигнализатора с абсолютной и относительной уставкой.
- Возможность ограничения уставки температуры для защиты оборудования от некорректного использования.
- Режим блокировки кнопок управления (режим LOC).
- Защита паролем пользовательских настроек.

Функциональная схема

Области применения




аппараты стыковой сварки

Общие технические характеристики

(муфельные, хлебопекарные и т.д.)

Характеристики	Значения
Измерительный вход (ИВ)	термосопротивление (TC): 50M, 100П, Pt100, Pt1000 термопара (ТП): L, J, K, S, B
Предел основной приведенной погрешности	TC (100П, Pt100, Pt1000): ±0,25 % TC (50М): ±0,5 % TП: ±0,25 %
Предел дополнительной приведенной погрешности	±0,1 % на каждые 10°C температуры окружающего воздуха относительно (20±5)°C
Время опроса измерительного входа	0,1 c
Метод регулирования	ON/OFF (двухпозиционный) регулятор, ПИД-регулятор, ПИД-Fuzzy-регулятор, сигнализатор
Типы выходных устройств (ВУ)	тип R: э/м реле (HO+H3; 5 А при ~250 В, 3 А при =30 В) тип Т: ТТР выход (импульсный выход) для управления внешним твердотельным реле =12 В (макс. 30 мА)
Условия окружающей среды при эксплуатации и хранении	температура окружающего воздуха: -20+50 °C относительная влажность воздуха не более 80 % (без образования конденсата)
Степень защиты, обеспечиваемая оболочкой	IP20 (задняя сторона), IP54 (лицевая сторона)
Допустимый диапазон напряжения питания	от 190 до 240 В переменного тока

Точное поддержание температуры по ПИД-закону регулирования

Регуляторы серии ECD110 созданы для точного поддержания температуры по ПИД-закону регулирования. Кроме классической формулы ПИД регулятора, ECD110 обладает дополнительным рядом возможностей, позволяющих добиться хорошей точности регулирования:

- 1) Повышенная скорость опроса датчиков температуры период опроса 100 мс.
- 2) Эффективные алгоритмы автоматического поиска коэффициентов регулятора.
 - 3) Дополнение классической формулы ПИД-регуля-

тора набором правил, учитывающих характер изменения температуры с течением времени.

В качестве управляющего выхода регулятора может использоваться ТТР-выход или э/м реле. Выбор выходного устройства задается в настройках. При использовании ТЭНов крайне рекомендуется использование ТТР-выхода и внешнего твердотельного реле, так как использование полупроводниковых коммутирующих устройств существенно увеличивает срок службы установки, снижает уровень электромагнитных помех и абсолютно беззвучно.

Вспомогательный сигнализатор

Не редко, в ходе технологических процессов, кроме самого процесса регулирования температуры, необходимы дополнительные операции. Например:

- 1) контроль нахождения температуры в рабочей зоне;
- 2) сигнализация о перегреве или, наоборот, о чрезмерном падении температуры;
- 3) принудительное охлаждение объекта при превышении температуры;
 - 4) включение вспомогательных ступеней нагрева.

Для решения обозначенных задач ECD110 имеет встроенный сигнализатор, поддерживающий 8 режимов работы.

Диаграмма работы	Описание работы	Диаграмма работы	Описание работы
выкл ру	П-образная логика (измеренная величина находится в заданном диапазоне)	Уставка синализатора ВКЛ ВЫКЛ Гистерезис синализатора	Выход измеренной величины за нижний предел
выкл Ру	U-образная логика (измеренная величина выходит за заданный диапазон)	Уставка синализатора ВКЛ ВЫКЛ Гистерезис синализатора	Выход измеренной величины за верхний предел
ВЫКЛ РУТАВКА ГИСТЕРВВИС СИГНАЛИЗАТОРА РЕГУЛЯТОРА СИГНАЛИЗАТОРА	П-образная логика (измеренная величина находится в заданном диапазоне с уставкой зависимой от уставки ЛУ1)	ВЫКЛ Уставка регулятора РV	Выход измеренной величины за нижний предел с уставкой зависимой от уставки ЛУ1
ВЫКЛ Бистерезис Уставка Гистерезис сигнализатора	U-образная логика (измеренная величина выходит за заданный диапазон с уставкой зависимой от уставки ЛУ1)	Уставка регулятора ВКЛ ВЫКЛ Гистеревис сигнализатора	Выход измеренной величины за верхний предел с уставкой зависимой от уставки ЛУ1

где: PV - измененная величина

Код заказа

Сравнительная таблица терморегуляторов серии ECD100 и ECD110

Характеристики	ECD100	ECD110
Исполнение корпуса	S – щитовое исполнение 48х48мм D2 – крепление на DIN-рейку	S – щитовое исполнение 48х48мм
Количество измерительных входов	1	1
Типы поддерживаемых датчиков температуры	50M, 100П, Pt100, Pt1000 L, J, K, S, B	50M, 100П, Рt100, Pt1000 L, J, K, S, B
Методы регулирования	ON/OFF (двухпозиционный)	ON/OFF (двухпозиционный) ПИД ПИД-Fuzzy
Режимы регулирования	«Нагреватель», «Холодильник»	«Нагреватель», «Холодильник»
Выходы	1 релейный выход (5А, НО+Н3)	1 релейный выход (5А, НО+Н3) 1 TTP-выход (=12В, 30 мА)
Блокировка кнопок управления (LOC)	✓	✓
Плавный запуск нагрева	×	~
Ограничение задания уставки регулятора	~	~