

Руководство по выбору расходомера. Часть 1

Определение метода измерения расхода в зависимости от характеристик измеряемой среды

В промышленности на узлах технического и коммерческого учета энергоресурсов, в системах регулирования и дозирования в настоящее время чаще всего применяют ультразвуковые, электромагнитные, вихревые и кориолисовые расходомеры. Учитывая многообразие измеряемых сред и возникающих измерительных задач, выбор подходящего по своим характеристикам измерителя расхода является достаточно сложной задачей. Даже если выбирать только среди указанных четырех типов расходомеров.

Цель данного руководства – дать начальное представление о пригодности каждого из четырех методов измерения расхода для решения имеющейся измерительной задачи. А также существующих ограничениях и особенностях применения расходомеров каждого типа.

К основным (базовым) критериям выбора типа измерителя расхода относятся:

- Характеристики измеряемой среды (физико-химические свойства);
- Необходимость измерения реверсивных потоков или массового расхода;
- Динамический диапазон измерения;
- Точность измерения, межповерочный интервал и наличие возможности поверки расходомера без его демонтажа;
- Надежность, эксплуатационные характеристики.

В данной части руководства рассмотрим применимость расходомеров с кориолисовым, ультразвуковым, электромагнитным и вихревым методом измерения в зависимости от характеристик измеряемой среды.

Физико-химические свойства измеряемой среды играют определяющее значение при выборе метода измерения расхода и конструктивного исполнения расходомера. К физико-химическим свойствам среды относятся такие параметры как агрегатное состояние среды, ее температура и давление (номинальные, минимальные и максимальные), вязкость и химическая активность, наличие в ней примесей, склонность к образованию отложений и т.п.

Электромагнитные расходомеры предназначены только для измерения электропроводящих жидкостей, растворов и пульпы. Измерение расхода химически обессоленной воды, пара и газов невозможно с помощью расходомеров данного типа. При выборе конкретной модификации электромагнитного расходомера особое внимание нужно уделить материалу футеровки измерительной части, так как именно от нее зависит температурная и коррозионная стойкость измерительной части датчика. Неправильный выбор материала футеровки может привести к ее вспучиванию, отслоению и как результат, к недостоверным показаниям или выходу расходомера из строя.

Основные материалы, применяемые для футеровки измерительной части электромагнитных расходомеров, приведены в таблице 1.

Таблица 1.

Материал футеровки	Область применения	Диапазон температур измеряемой среды, °С
PFA (перфторалоксид)	Превосходная стойкость к воздействию высоких температур, коррозионно-активных веществ и механическим напряжениям. Низкая устойчивость к истиранию.	-29+177
РТГЕ (Политетрафторэтилен)	Более экономичный в сравнении с PFA. Отличная стойкость к воздействию химикатов, но меньшая износостойкость по сравнению с PFA. Хорошая размерная стабильность.	-29+177
ЕТГЕ (этилентетрафторэтилен)	Высокая прочность на разрыв и ударопрочность. Характеристики стойкости к воздействию химикатов и к износу аналогичные PTFE, но максимальная температура ниже.	-29+149
Полиуретан, твердая резина	Обычно используется для чистой воды (без химикатов). Износостойкость к шламу, содержащему мелкие частицы.	-18+60
Неопрен	Обычно используется для пресной и морской воды. Износостойкость к шламу, содержащему мелкие частицы.	-18+85
Linatex	Обычно используется для горного шлама, высокая стойкость к износу от обломков породы.	- 18+70

В зависимости от производителя расходомеров и способа нанесения футеровки, температурные и механические характеристики могут незначительно отличаться.

Электромагнитные расходомеры, в зависимости от конструктивного исполнения, способны работать в диапазоне температур измеряемой среды от -30 до +180°С, давлении до 16 МПа и выше, вязкости измеряемой среды от 0,1 до 100 000 мПа*с. Следует учитывать, что некоторые электромагнитные расходомеры, в зависимости от материала футеровки, могут иметь ограничения на установку на всасывающем трубопроводе насосов, так как понижение давления может привести к отслаиванию футеровки.

Вихревые расходомеры являются самыми «всеядными» в плане измеряемых сред. Расход холодных и горячих жидкостей, не зависимо от их электропроводящих свойств, насыщенного и перегретого пара, природного и технических газов может быть измерен с помощью расходомеров данного типа.

Но и у них есть свои ограничения связанные с используемым методом измерения: вихревые датчики расхода не предназначены для измерения вязких и загрязненных сред и сред склонных к образованию отложений. Кроме того расходомеры данного типа наиболее чувствительны к турбулентности и неоднородности потока и вибрации трубопровода.

Учитывая, что измерительная часть вихревых расходомеров выполнена из металла, без применения полимерных футеровок, данный тип датчиков расхода может использоваться для измерения с температурой от -40 до +250°С. Давление среды обычно не должно превышать 10 МПа, максимальная вязкость ограничена величиной примерно 10 мПа*с.

При измерении высокотемпературных сред для защиты электроники электронного блока расходомера от перегрева и обеспечения удобной и безопасной их эксплуатации рекомендуется использовать разнесенное исполнение (не зависимо от типа расходомера и метода измерения). При разнесенном исполнении измерительная часть расходомера располагается на трубе, а блок электроники и индикации на некотором удалении от нее, в удобном для обслуживания месте с нормальным температурным режимом.

Ультразвуковые расходомеры предназначены для измерения расходов чистых (гомогенных) и загрязненный (гетерогенных) жидкостей и газов в зависимости от метода измерения. Для измерения чистых однородных сред следует выбирать ультразвуковой расходомер с время-импульсным методом измерения. Для измерения загрязненный многофазных сред следует выбирать расходомер с доплеровским методом измерения.

Ультразвуковые расходомеры имеют наиболее широкий диапазон применения по температуре и давлению измеряемой среды. Так для расходомеров с врезными датчиками температура измеряемой среды может быть в пределах от -200 до +200°C, давление до 4 МПа, вязкость среды от 0 до 350 мПа*с. Расходомеры с накладными датчиками рассчитаны на температуру измеряемой среды от -40 до +120°C и не имеют ограничений по максимальному давлению (величина максимального давления ограничивается только прочностными характеристиками самого трубопровода). Вязкость измеряемой среды может быть в пределах от 0,5 до 2500 мПа*с.

Кориолисовые расходомеры используются для высокоточного измерения расхода (массы) жидкостей, в том числе жидкостей с высокой вязкостью, а также жидкостей с включением твердых компонентов и растворенных газов (до нескольких процентов по объему). Наибольшее применение расходомеры данного типа получили для измерения расхода и дозирования коррозионно-активных веществ, топлива и сжиженных углеводородных газов.

Кориолисовые расходомеры обеспечивают высокоточное измерение массового расхода при изменении температуры и давления измеряемой среды в широких пределах, не чувствительны к турбулентности потока, поэтому не требуют прямолинейных участков до и после расходомера. Рассчитаны на измерение расхода среды с температурой от -50 до +180°C, давлением до 40 МПа и вязкостью от 0 до 100 000 мПа*с.

Для удобства выбора типа расходомера в зависимости от физико-химических свойств среды и измерительной задачи, все данные по четырем рассмотренным выше методам измерения, сведены в таблицы 2 и 3.

Таблица 2

Метод измерения	Измеряемая среда	Диапазон температур, °С	Максимальное давление, МПа	Диапазон вязкости, мПа*с
Электромагнитный	Электропроводящие жидкости	-30+180	16	0,1100000
Вихревой	Жидкости, пар, газы	-40+250	10	010
Ультразвуковой (врезные датчики)	Жидкости, газы	-200+200	4	0300
Ультразвуковой (накладные датчики)	Жидкости, газы	-40+120	нет ограничений	0,52500
Кориолисовый	Жидкости, газы	-50+180	40	0100000

Таблица 3

Метод измерения	Возможность применения в системах коммерческого учета	Возможность применения в системах дозирования	Измерение массового расхода	Измерение реверсивных потоков
Электромагнитный	+	+	-	+
Вихревой	+	-	+	-
Ультразвуковой	+	-	+	+
Кориолисовый	+	+	+	+

Необходимо помнить, что приведенных выше данных еще недостаточно для того, чтобы сделать однозначный обоснованный выбор в пользу того или иного метода измерений и уж тем более выбрать конкретный тип и модификацию расходомера. Данная информация позволяет лишь сразу отбросить те методы измерений, которые однозначно нельзя использовать для решения конкретной измерительной задачи. Чтобы снизить вероятность ошибки, в процессе выбора рекомендуется активно взаимодействовать с нашими специалистами.