

Model Number

ECA30PL - SSI

Cable pull rotary encoder with SSI interface

Features

- Robust aluminum drum housing
- Drum travel when cable retracted using threaded spindle
- Bellows with steel tip
- Comprehensive accessories
- Housing can be coated as an option (Hart Coat)
- Rust and acid-resistant measuring cable
- SSI interface
- Free of wear magnetic sampling
- Additionally push buttons for preset function (only model characteristic SB2, SG2)

Description

Flexible cable pull rotary encoder designed to meet tough requirements in all fields of application.

Technical data

General specifications	Genera	I specifications
------------------------	--------	------------------

B_{10d}

Connector

magnetic sampling Detection type Device type Premium Line with SSI interface Measuring range 1000 ... 60000 mm 80 mm, 130 mm, 190 mm Construction type Resolution Cable pull: Design 80 mm: 0,024 mm Design 130 mm: 0,041 mm Design 190 mm: 0,059 mm Encoder: 25 Bit (13 Bit/revolution)

Functional safety related parameters

Electrical specifications	
Operating voltage U _B	4.75 30 V DC
No-load supply current I ₀	typ. 50 mA
Power consumption P ₀	approx. 1.5 W
Time delay before availability t _v	< 450 ms
Output code	Gray code, binary code

300000

Code course (counting direction) adjustable

Interface	
Interface type	SSI
Cycle time	< 100 μs
Standard conformity	RS 422

Input 1

Input type Selection of counting direction (cw/ccw) Signal voltage High 4.75 V ... U_B (cw descending)

0 ... 2 V or unconnected (cw ascending) Low Input current < 6 mA

Input 2 Input type zero-set (PRESET 1) with falling edge

Signal voltage 4.75 V ... U_B High Low 0 ... 2 V

Input current < 6 mA Signal duration Connection

Cable Ø7 mm, 6 x 2 x 0.14 mm², 1 m (cable length, see order code)

Standard conformity Degree of protection DIN EN 60529, IP65 DIN EN 60068-2-3, no moisture condensation

M12 connector, 8-pin or M23 connector, 12-pin

Climatic testing **Emitted interference** EN 61000-6-4:2007

EN 61000-6-2:2005 Noise immunity Ambient conditions

-30 ... 70 °C (-22 ... 158 °F) Ambient temperature Operating temperature -30 ... 70 °C (-22 ... 158 °F) Storage temperature -30 ... 70 °C (-22 ... 158 °F) Relative humidity $98\ \%$, no moisture condensation

Mechanical specifications

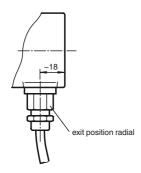
Rope diameter 1.35 mm Bending radius min. 17 mm Breaking force min. 1227 N

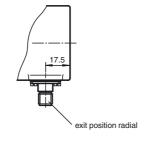
Material Cable pull anodized aluminum or Aluminum with Hart Coat coating

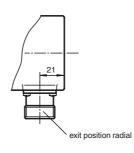
Rotary encoder housing: nickel-plated steel Flange: aluminum Flange Aluminum

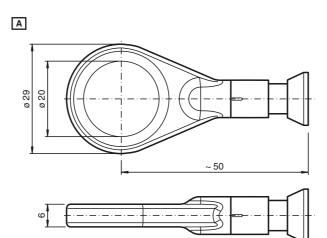
Rope Stainless steel 1.4401/316 up to 10⁶ Cycles Life span

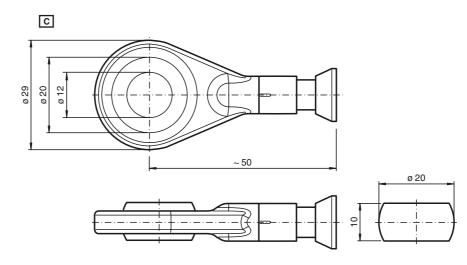
Dimensions

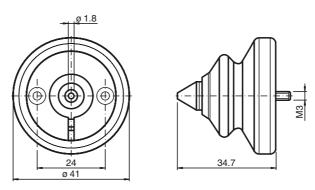

Details of variable specifications of desgins and measuring length see chapter "Variable Data and Dimensions"

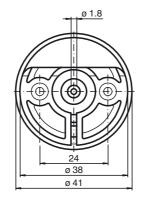


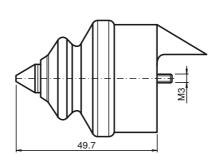

*depending on measuring length


Connections
Dimensions in mm

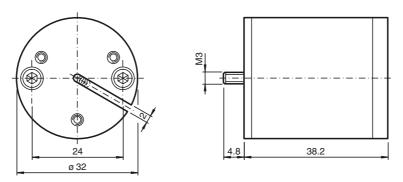

Cable Connector M12 Connector M23



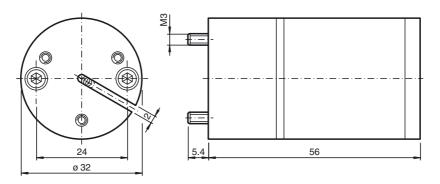


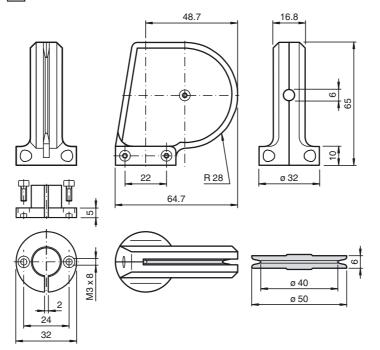


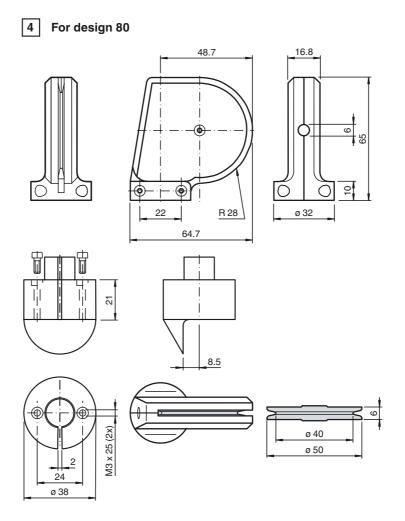
1 For design 130/190



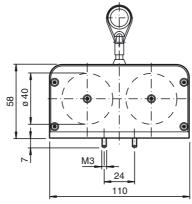
1 For design 80



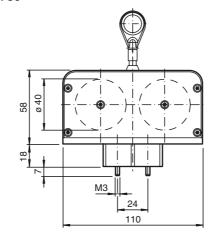

2 For design 130/190

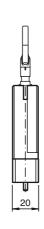


2 For design 80



4 For design 130/190




5 For design 130/190

5 For design 80

Electrical connection

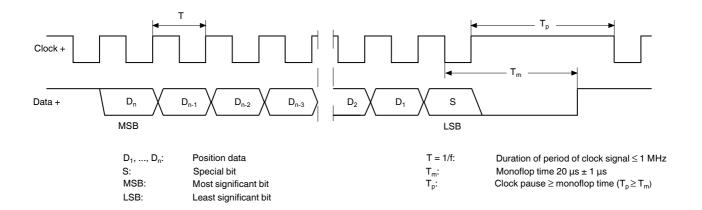
Signal	Cable, 12-core	Connector M12, 8-pin	Connector M23, 12-pin, cw	Connector M23, 12-pin, ccw	Explanation
GND (encod- er)	White	1	1	1	Power supply
U _b (encoder)	Brown	2	2	8	Power supply
Clock (+)	Green	3	3	3	Positive cycle line
Clock (-)	Yellow	4	4	11	Negative cycle line
Data (+)	Grey	5	5	2	Positive transmission data
Data (-)	Pink	6	6	10	Negative transmission data
Reserved	Black		7	12	Not wired, reserved
V/R	Red	8	8	5	Input for selection of counting di- rection
PRESET 1	Blue	7	9	9	zero-setting input
Reserved	Violet		10	4	Not wired, reserved
Reserved	Grey/Pink		11	6	Not wired, reserved
Reserved	Red/Blue		12	7	Not wired, reserved
		2 (3 4 5 6	8 9 1 10 7 6 6 6 3 3	9 10 2 8 12 7 3 4 11 5	

Variable Data and Dimensions

Technical Data	Design 80			echnical Data Design 80 Design 130						Desig	n 190		
Max. measuring length (in m)	01	02	03	05	10	15	20	25	30	35	40	50	60
Drum size (incl. cable) (in mm)	200			ze (incl. cable) (in mm) 200 334,1							49	1,5	

Retraction speed (in m/s)	8		8	8 6		6	3		4				
Spring retraction force (in N)	5-15			10-21	15-21	10-21	15-21	1 10-21 15-21		18-37			
Weight (in kg)	0,9	1,1	1,5	2,5	3,5	5	6	7,5	8,5	16	20	14,5	15,5
Dimensions (in mm)													
Α	34	42	60	77	124	147	193	216	262	188	203	195	210
В	57	72	98	122	190	236	304	350	418	315	346	292	322
С	80				130					190			
D	50			80					140				
E	31,5				52			79					

Measuring Cable Attachments


	Dimensions (in mm)	Desi	gn 80	Design 130/design 190			
	Attachment	Length	Width/Ø	Length	Width/Ø		
1	Bellows	49.7	41/38	34.7	41		
2	Brush attachment with bellows and steel tip	90.7	32	72.9	32		
4	Guide pulley	86	32	70	32		
5	Double guide pulley	110	58	110	58		
			Design 8	0/130/190			
		Length					
8	Brush attachment + guide pulley	126 108.2					

Description

The Synchronous Serial Interface was specially developed for transferring the output data of an absolute encoder to a control device. The control module sends a clock bundle and the absolute encoder responds with the position value.

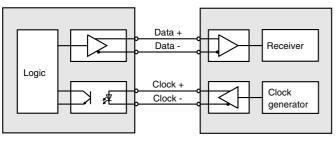
Thus only 4 lines are required for the clock and data, no matter what the resolution of the rotary encoder is. The RS 422 interface is optically isolated from the power supply.

SSI signal course Standard

SSI output format Standard

- At idle status signal lines "Data +" and "Clock +" are at high level (5 V).
- The first time the clock signal switches from high to low, the data transfer in which the current information (position data (D_n) and special bit (S)) is stored in the encoder is introduced.±
- The highest order bit (MSB) is applied to the serial data output of the encoder with the first rising pulse edge.
- The next successive lower order bit is transferred with each following rising pulse edge.
- After the lowest order bit (LSB) has been transferred the data line switches to low until the monoflop time T_m has expired.
- No subsequent data transfer can be started until the data line switches to high again or the time for the clock pause Tp has expired.
- $\bullet \quad \text{After the clock sequence is complete, the monoflop time } T_m \text{ is triggered with the last falling pulse edge}.$
- The monoflop time T_m determines the lowest transmission frequency.

SSI output format ring slide operation (multiple transmission)


- In ring slide operation, multiple transmission of the same data word over the SSI interface makes it possible to offer the possibility of detecting transmission errors
- In multiple transmission, n bits are transferred per data word in standard format. The value n equals the total resolution of the encoder.

 As an example: a multiturn encoder with a resolution of 8192 steps/revolution (13 bit) and a max. number of 4096 revolutions (12 bit) has a total resolution of n = 25 bit.
- If the clock change is not interrupted after the last falling pulse edge, ring slide operation automatically becomes active. This means that the information that was stored at the time of the first clock change is generated again.
- After the first position transmission, the n+1 pulse controls data repetition. If the n+1 pulse follows after an amount of time greater than the monoflop
 time T_m, a new current data word will be transmitted with the following pulses.

If the pulse line is exchanged, the data word is generated offset.

Block diagram

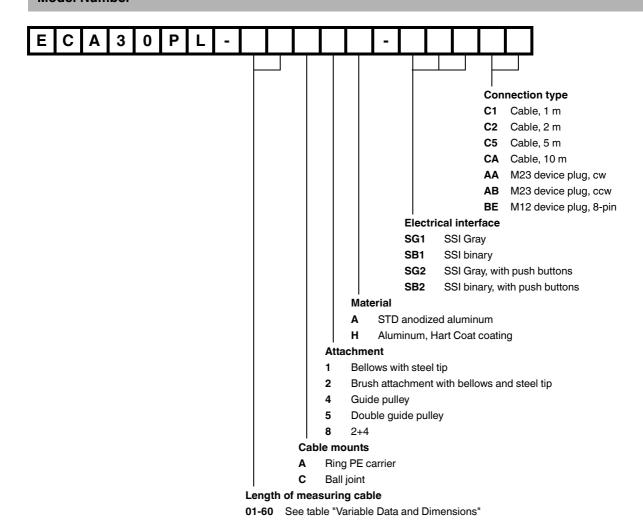
Rotary encoder

Interface electronics

Line length

Line length in m	Baudrate in kHz
< 50	< 400
< 100	< 300
< 200	< 200
< 400	< 100

Push buttons on encoder with model characteristic SB2, SG2


In addition to the electrical preset function (PRESET 1) these models are equipped with 2 push buttons for manually setting the zero point of the rotary encoder.

Manually zero set

1. Simultaneously press and hold the push buttons A and B for 2 s.

After releasing the push buttons the rotary encoder sets the current position as zero point.

Model Number

Release date: 2016-09-14 10:22 Date of issue: 2018-03-19 t181402_eng xml