
Инструкция по эксплуатации Вихревой расходомер

efector300

SVxxx0

RU

Содержание

1	Инструкции по безопасной эксплуатации	3
	Функции и ключевые характеристики	
	Функция	
4	Установка	4
5	Электрическое подключение	6
	Органы управления и индикация	
7	Меню	8 9 10 11
	7.3.2 Объяснение настроек дисплея (DIS)	14
9	Заводская настройка	15

Техническая характеристика, сертификаты, принадлежности и дополнительная информация представлена на сайте www.ifm.com.

1 Инструкции по безопасной эксплуатации

- Внимательно прочитайте эту инструкцию до начала установки и эксплуатации. Убедитесь в том, что прибор подходит для Вашего применения без каких-либо ограничений.
- Если не соблюдаются инструкции по эксплуатации или технические данные, то возможны травмы обслуживающего персонала или повреждения оборудования.
- Применение прибора не по назначению может привести к его неисправности (неправильному срабатыванию) и нежелательным последствиям. Поэтому все работы по установке, настройке, подключению, вводу в эксплуатацию и техническому обслуживанию должны проводиться только квалифицированным персоналом, получившим допуск к работе на технологическом оборудовании.
- Для гарантированно надёжной работы прибора, необходимо использовать его только в среде, где его конструкционные материалы, являются достаточно стойкими (→ Технические данные).
- Ответственность за совместимость измерительного прибора с конкретным применением несёт пользователь. Производитель не несет ответственности за последствия неправильного применения. Неправильная установка и использование прибора приводит к потере гарантии.

А ВНИМАНИЕ

При температуре среды более 50 °C (122 °F) некоторые части корпуса прибора могут нагреваться до 65 °C (149 °F). Опасность ожога.

- ▶ В этом случае не дотрагивайтесь до прибора.
- ▶ Берегите корпус прибора от контакта с легковоспламеняющимися веществами и от непреднамеренного соприкосновения.
- ► Не нажимайте кнопки настройки вручную. Используйте для этого какой-нибудь предмет (напр. шариковую ручку).

2 Функции и ключевые характеристики

Прибор предназначен для контроля жидкостей на основе воды (вода, деионизованная вода, охлаждающая вода).

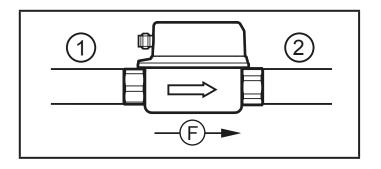
Он применяется для измерения объемного расхода и температуры среды.

Директива EC по оборудованию, работающему под давлением (PED): приборы соответствуют Директиве ЕС по оборудованию, работающему под давлением, они предназначены и изготовлены для текучих сред группы 2 в соответствии с надлежащей инженерно-технической практикой. Использование в текучих средах группы 1 только по запросу.

3 Функция

- Датчик определяет объёмный расход на вихревом принципе измерения.
- Датчик оснащен интерфейсом IO-Link.
- Датчик показывает текущую температуру среды и поток. Датчик формирует 2 выходных сигнала согласно настройке параметров:

OUT1/IO-Link: 2 варианта настройки


- переключаемый сигнал для предельного значения объемного расхода
- или частотный сигнал для объемного расхода

OUT2: 4 варианта настройки

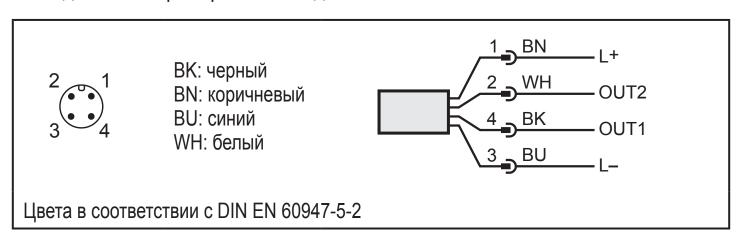
- коммутационный сигнал для предельного значения объемного расхода
- или коммутационный сигнал для предельного значения по температуре
- или частотный сигнал для объемного расхода
- или частотный сигнал для температуры

4 Установка

- ▶ Поток по направлению стрелки. Соблюдайте направление установки.
- Убедитесь, что труба и датчик имеют сходный внутренний диаметр.
- ▶ Избегайте образования отложений, скопления аккумулированного газа и воздуха в трубной системе. Установите прибор так, чтобы измерительная трубка была всегда заполненной.
- Устанавливайте датчик перед или в ровной части трубы (стояке).
- ▶ Рекомендуемый момент затяжки: 30 Нм
- Избегайте возникновения помех на входной и выходной стороне. Для этого, обеспечьте впускную и выпускную трубы длиной:

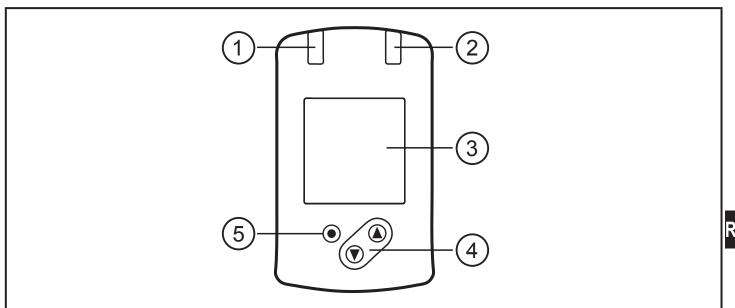
DN = номинальная ширина трубы R = радиус

Помехи	Длина впускной трубы (1)	Длина выпуск- ной трубы (2)
Неидеальный изгиб	≥ 5 x DN	≥ 1 x DN
Идеальный изгиб	≥ 0.5 x DN	
Многократные изгибы (2 x 90°)	≥ 15 x DN	
Снижение внутреннего диаметра трубы	≥ 15 x DN	≥ 15 x DN
Клапан или насос	≥ 25 x DN	


- ► Установите прибор так, чтобы никакие механические силы не оказывали влияния на трубу. Чтобы это сделать, используйте крепежные уголки.
 - Для непосредственной установки зафиксируйте прибор на поверхности с помощью 4 самонарезающих винтов М4 DIN 7500. Максимальная глубина погружения в корпус: 5,5 мм.
 - Для установки с помощью элемента крепления: монтажные принадлежности ifm см. на www.ifm.com.
- ▶ Не устанавливайте датчик следующим образом:
 - Прямо перед нисходящей трубой.
 - В нисходящей трубе.
 - На самую высокую точку трубной системы.
 - Прямо перед выпускным отверстием.
 - На стороне всасывания насоса.

5 Электрическое подключение

К работам по установке и вводу в эксплуатацию допускаются только квалифицированные специалисты - электрики.


Придерживайтесь действующих государственных и международных норм и правил по монтажу электротехнического оборудования. Напряжение питания соответствует стандартам EN 50178, SELV, PELV.

- ▶ Отключите электропитание.
- ▶ Подключите прибор согласно данной схеме:

Контакт 1	L+
Контакт 3	L-
Контакт 4 (OUT1)	 Коммутационный сигнал: предельные значения объёмного расхода Частотный сигнал для объёмного расхода IO-Link
Контакт 2 (OUT2)	 Коммутационный сигнал: предельные значения объёмного расхода Коммутационный сигнал: предельные значения температуры Частотный сигнал для объёмного расхода Частотный сигнал для объёмного расхода

6 Органы управления и индикация

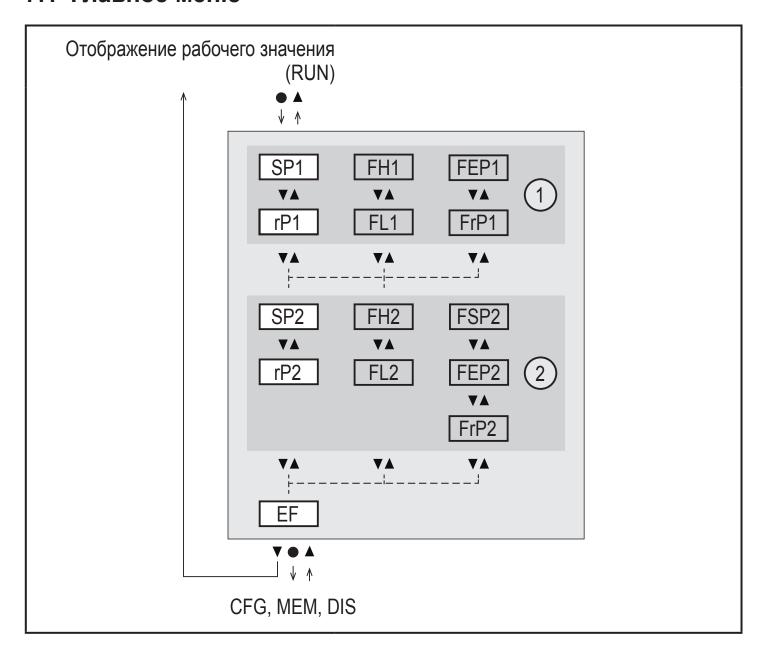
1 и 2: светодиоды коммутационного состояния

- Светодиод 1 = статус переключения OUT1 (горит, когда выход 1 переключен)
- Светодиод 2 = статус переключения OUT2 (горит, когда выход 2 переключен)

3: Дисплей TFT

- Отображение текущих измеренных значений параметров (объёмный расход, температура)
- Индикация параметров и значений параметров

4: Кнопки [▲] и [▼]


- Выбор параметров
- Изменение значений параметров (удерживайте кнопку нажатой)
- Изменение единицы измерения в нормальном рабочем режиме (Рабочий режим)
- Блокировка / разблокировка (нажмите одновременно кнопки на > 10 секунд)

5: Кнопка [•] = Enter

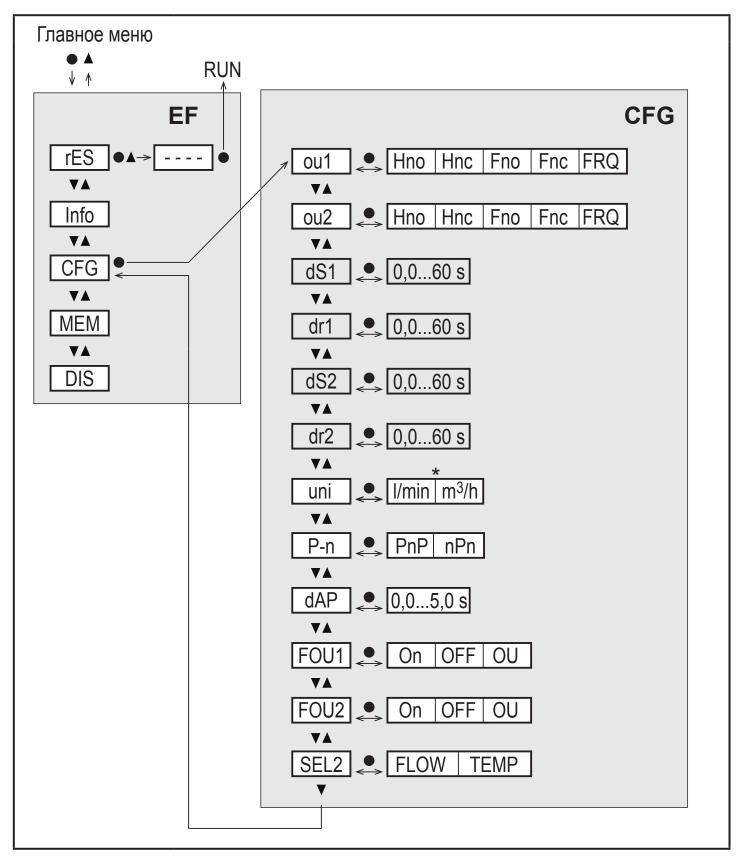
- Переход из рабочего режима к главному меню
- Переход к режиму настройки
- Подтверждение установленнонго значения параметра

7 Меню

7.1 Главное меню

- 1: Выходные функции ou1 (\rightarrow 7.2.1)
- 2: Выходные функции ou2 (\rightarrow 7.2.1)
- Параметры отображаются только при выборе на ou1 / ou2.

7.1.1 Пояснения для главного меню


Коммут	Коммутационный выход с функцией гистерезиса		
SP1	Точка срабатывания 1 = верхнее предельное значение, при котором OUT1 включается.		
rP1	Точка сброса 1 = нижнее предельное значение, при котором OUT1 выключается.		
SP2	Точка срабатывания 2 = верхнее предельное значение, при котором OUT2 включается.		
rP2	Точка сброса 2 = нижнее предельное значение, при котором OUT2 выключается.		

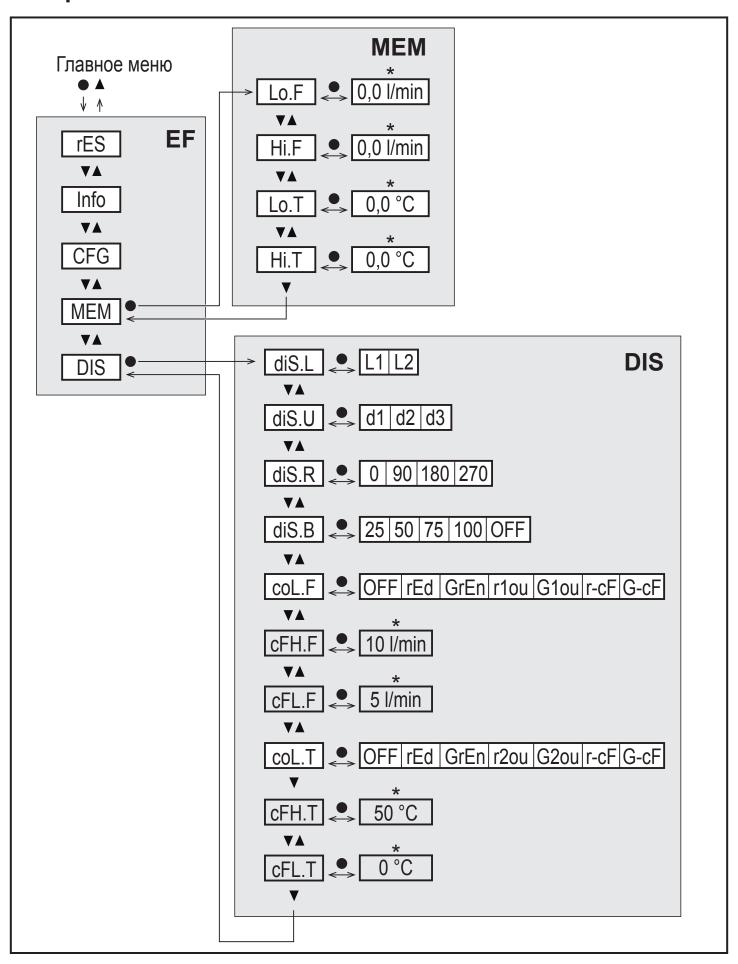
Коммут	Коммутационный выход с функцией окна		
FH1	Точка срабатывания 1 = верхнее предельное значение, при котором OUT1 включается.		
FL1	Точка сброса 1 = нижнее предельное значение, при котором OUT1 включается.		
FH2	Точка срабатывания 2 = верхнее предельное значение, при котором OUT2 включается.		
FL2	Точка сброса 2 = нижнее предельное значение, при котором OUT2 включается.		

Частотный выход		
FEP1	Конечная точка рабочего значения на OUT1.	
FrP1	Частота при конечной точке рабочего значения (FEP1) на OUT1.	
FSP2	Начальная точка рабочего значения на OUT2 (только если SEL2 = TEMP).	
FEP2	Конечная точка рабочего значения на OUT2.	
FrP2	Частота при конечной точке рабочего значения (FEP2) на OUT2.	

Расширенные функции		
EF	Открывает нижний уровень меню.	

7.2 Расширенные функции - основные настройки

^{*} Для SVx6xX: gpm / gph


Параметры отображаются только когда oux = Hno, Hnc, Fno, Fnc.

rES	Обновление заводской настройки
Информа- ция	Информация об устройстве
CFG	Подменю основные настройки
MEM	Подменю мин./макс. память
DIS	Подменю настроек дисплея

7.2.1 Объяснение основных настроек (CFG)

ou1	Функция выходного сигнала OUT1 • Поток: Hno, Hnc, Fno, Fnc, FRQ		
ou2	Функция выходного сигнала OUT2 • Поток: Hno, Hnc, Fno, Fnc, FRQ • Датчик температуры: Hno, Hnc, Fno, Fnc, FRQ		
Hno	Функция гистерезиса нормально открытый		
Hnc	 		
Fno			
Fnc			
FRQ	Частотный выход		
dS1	Задержка переключения на OUT1 в секундах		
dr1	Задержка выключения для OUT1 в секундах	Только если oux = Hno, Hnc, Fno, Fnc	
dS2	Задержка переключения для OUT2 в секундах		
dr2	Задержка выключения для OUT2 в секундах		
uni	Стандартная единица измерения для моментального расхода		
P-n	Логический выход: pnp / npn		
dAP	Демпфирование измеренного значения в секундах (только для объемного расхода)		
FOU1	Реакция OUT1 на ошибку внутри системы		
FOU2	Реакция OUT2 на ошибку внутри системы		
SEL2	Стандартная единица измерения для оценки OUT2: Объёмный расход или температура среды		

7.3 Расширенные функции – мин. / макс. память – отображение

^{*} Для SVx6xx: gpm, °F

Параметры отображаются только при выборе r-cF или G-cF.

7.3.1 Объяснение мин./макс. память (МЕМ)

Lo.F	Минимальное значение потока, измеренного в течение процесса	
Hi.F	Максимальное значение потока, измеренного в течение процесса	
Lo.T	Минимальное значение температуры, измеренной в течение процесса	
Hi.T	Максимальное значение температуры, измеренной в течение процесса	

7.3.2 Объяснение настроек дисплея (DIS)

diS.L	Стандартный формат дисплея (L1 объем или L2: объем или температура)	
diS.U Частота обновления дисплея		
diS.R Вращение дисплея		
diS.B Яркость дисплея		
coL.F	Конфигурация цвета для моментального расхода	
coL.T	Конфигурация цвета для температуры	
OFF	Изменение цвета не происходит	
rEd	Рабочее значение всегда красное, независимо от функции выходного сигнала	
GrEn	Рабочее значение всегда зеленое, независимо от функции выходного сигнала	
r1ou / r2ou	Рабочее значение красное в случае переключенного выхода OUT1 / OUT2	
G1ou / G2ou	Рабочее значение зеленое в случае переключенного выхода OUT1 / OUT2	
r-cF	Отображение красное, если измеренное значение находится между предельными значениями cFLcFH, независимо от функции выходного сигнала	
G-cF	Отображение зеленое если измеренное значение находится между значениями cFLcFH, независимо от выходного сигнала	

cFH.F	Верхнее предельное значение для изменения цвета дисплея - расход	
cFL.F	Нижнее предельное значение для изменения цвета дисплея - расход	Только если выбрано r-cF или G-cF.
cFH.T	Верхнее предельное значение для изменения цвета дисплея - температура	
cFL.T	Нижнее предельное значение для изменения цвета дисплея - температура	

8 Настройка параметров

Параметры могут быть установлены до установки и настройки прибора или во время эксплуатации.

- !
- Если Вы измените параметры во время работы прибора, то это повлияет на функционирование оборудования.
- ▶ Убедитесь в правильном функционировании.
- ្បី Параметры можно также настроить с помощью интерфейса IO-Link.

8.1 О настройке параметров

1.	Переход из рабочего режима к главному меню	[•]
2.	Выбор соответствующего параметра	[▲] или [▼]
3.	Переход к режиму настройки	[•]
4.	Значения параметра	[▲] или [▼] > 1 с
5.	Подтверждение установленнонго значения параметра	[•]
6.	Возвращение в рабочий режим	> 30 секунд (таймаут) или нажимайте одновременно [▲] + [▼] до тех пор, пока датчик не перейдёт в режим работы.

RU

9 Заводская настройка

Параметр		Заводская настройка	Настройка пользова- теля
SP1	(FLOW)	20 % *	
rP1	(FLOW)	18,5 % *	
FH1	(FLOW)	20 % *	
FL1	(FLOW)	18,5 % *	
FEP1	(FLOW)	100 % *	
FrP1	(FLOW)	100 Гц	
SP2	(FLOW, TEMP)	40 % *	
rP2	(FLOW, TEMP)	38,5 % *	
FH2	(FLOW, TEMP)	40 % *	
FL2	(FLOW, TEMP)	38,5 % *	
FSP2	(TEMP)	0 % *	
FEP2	(FLOW, TEMP)	100 % *	
FrP2	(FLOW, TEMP)	100 Гц	
ou1	(FLOW)	Hno	
ou2	(FLOW, TEMP)	Hno	
FOU1	(FLOW)	OFF	
FOU2	(FLOW, TEMP)	OFF	
SEL2	(FLOW, TEMP)	FLOW	
col.F	(FLOW)	OFF	
col.T	(TEMP)	OFF	
dS1		0 c	
dr1		0 c	
dS2		0 c	
dr2		0 c	
uni		л/мин (SVx6xx: gpm)	
P-n		PnP	

Параметр	Заводская настройка	Настройка пользова- теля
dAP	0.6 c	
diS.L	L2	
diS.U	d2	
diS.R	0	
diS.B	75 %	
cFH.F	MEW	
cFL.F	MAW	
cFH.T	MEW	
cFL.T	MAW	

MEW = конечное значение диапазона измерения

MAW = начальное значение диапазона измерения

^{*} Процентные значения касаются конечного значения диапазона измерения.